summaryrefslogtreecommitdiff
path: root/src/counterexample.c
blob: 2195b6efe70a0a79537e72093c0ddfb7c305b57c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
/* Conflict counterexample generation

   Copyright (C) 2020-2022 Free Software Foundation, Inc.

   This file is part of Bison, the GNU Compiler Compiler.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <https://www.gnu.org/licenses/>.  */

#include <config.h>

#include "counterexample.h"

#include "system.h"

#include <errno.h>
#include <gl_linked_list.h>
#include <gl_rbtreehash_list.h>
#include <hash.h>
#include <mbswidth.h>
#include <stdlib.h>
#include <textstyle.h>
#include <time.h>

#include "closure.h"
#include "complain.h"
#include "derivation.h"
#include "getargs.h"
#include "gram.h"
#include "lalr.h"
#include "lssi.h"
#include "nullable.h"
#include "parse-simulation.h"


#define TIME_LIMIT_ENFORCED true
/** If set to false, only consider the states on the shortest
 *  lookahead-sensitive path when constructing a unifying counterexample. */
#define EXTENDED_SEARCH false

/* costs for making various steps in a search */
#define PRODUCTION_COST 50
#define REDUCE_COST 1
#define SHIFT_COST 1
#define UNSHIFT_COST 1
#define EXTENDED_COST 10000

/** The time limit before printing an assurance message to the user to
 *  indicate that the search is still running. */
#define ASSURANCE_LIMIT 2.0

/* The time limit before giving up looking for unifying counterexample. */
static double time_limit = 5.0;

#define CUMULATIVE_TIME_LIMIT 120.0

// This is the fastest way to get the tail node from the gl_list API.
static gl_list_node_t
list_get_end (gl_list_t list)
{
  gl_list_node_t sentinel = gl_list_add_last (list, NULL);
  gl_list_node_t res = gl_list_previous_node (list, sentinel);
  gl_list_remove_node (list, sentinel);
  return res;
}

typedef struct
{
  derivation *d1;
  derivation *d2;
  bool shift_reduce;
  bool unifying;
  bool timeout;
} counterexample;

static counterexample *
new_counterexample (derivation *d1, derivation *d2,
                    bool shift_reduce,
                    bool u, bool t)
{
  counterexample *res = xmalloc (sizeof *res);
  res->shift_reduce = shift_reduce;
  if (shift_reduce)
    {
      // Display the shift first.
      res->d1 = d2;
      res->d2 = d1;
    }
  else
    {
      res->d1 = d1;
      res->d2 = d2;
    }
  res->unifying = u;
  res->timeout = t;
  return res;
}

static void
free_counterexample (counterexample *cex)
{
  derivation_free (cex->d1);
  derivation_free (cex->d2);
  free (cex);
}

static void
counterexample_print (const counterexample *cex, FILE *out, const char *prefix)
{
  const bool flat = getenv ("YYFLAT");
  const char *example1_label
    = cex->unifying ? _("Example") : _("First example");
  const char *example2_label
    = cex->unifying ? _("Example") : _("Second example");
  const char *deriv1_label
    = cex->shift_reduce ? _("Shift derivation") : _("First reduce derivation");
  const char *deriv2_label
    = cex->shift_reduce ? _("Reduce derivation") : _("Second reduce derivation");
  const int width =
    max_int (max_int (mbswidth (example1_label, 0), mbswidth (example2_label, 0)),
             max_int (mbswidth (deriv1_label, 0),   mbswidth (deriv2_label, 0)));
  if (flat)
    fprintf (out, "  %s%s%*s ", prefix,
             example1_label, width - mbswidth (example1_label, 0), "");
  else
    fprintf (out, "  %s%s: ", prefix, example1_label);
  derivation_print_leaves (cex->d1, out);
  if (flat)
    fprintf (out, "  %s%s%*s ", prefix,
             deriv1_label, width - mbswidth (deriv1_label, 0), "");
  else
    fprintf (out, "  %s%s", prefix, deriv1_label);
  derivation_print (cex->d1, out, prefix);

  // If we output to the terminal (via stderr) and we have color
  // support, display unifying examples a second time, as color allows
  // to see the differences.
  if (!cex->unifying || is_styled (stderr))
    {
      if (flat)
        fprintf (out, "  %s%s%*s ", prefix,
                 example2_label, width - mbswidth (example2_label, 0), "");
      else
        fprintf (out, "  %s%s: ", prefix, example2_label);
      derivation_print_leaves (cex->d2, out);
    }
  if (flat)
    fprintf (out, "  %s%s%*s ", prefix,
             deriv2_label, width - mbswidth (deriv2_label, 0), "");
  else
    fprintf (out, "  %s%s", prefix, deriv2_label);
  derivation_print (cex->d2, out, prefix);

  if (out != stderr)
    putc ('\n', out);
}

/*
 *
 * NON UNIFYING COUNTER EXAMPLES
 *
 */

// Search node for BFS on state items
struct si_bfs_node;
typedef struct si_bfs_node
{
  state_item_number si;
  struct si_bfs_node *parent;
  int reference_count;
} si_bfs_node;

static si_bfs_node *
si_bfs_new (state_item_number si, si_bfs_node *parent)
{
  si_bfs_node *res = xcalloc (1, sizeof *res);
  res->si = si;
  res->parent = parent;
  res->reference_count = 1;
  if (parent)
    ++parent->reference_count;
  return res;
}

static bool
si_bfs_contains (const si_bfs_node *n, state_item_number sin)
{
  for (const si_bfs_node *search = n; search != NULL; search = search->parent)
    if (search->si == sin)
      return true;
  return false;
}

static void
si_bfs_free (si_bfs_node *n)
{
  if (n == NULL)
    return;
  --n->reference_count;
  if (n->reference_count == 0)
    {
      si_bfs_free (n->parent);
      free (n);
    }
}

typedef gl_list_t si_bfs_node_list;

/**
 * start is a state_item such that conflict_sym is an element of FIRSTS of the
 * nonterminal after the dot in start. Because of this, we should be able to
 * find a production item starting with conflict_sym by only searching productions
 * of the nonterminal and shifting over nullable nonterminals
 *
 * this returns the derivation of the productions that lead to conflict_sym
 */
static inline derivation_list
expand_to_conflict (state_item_number start, symbol_number conflict_sym)
{
  si_bfs_node *init = si_bfs_new (start, NULL);

  si_bfs_node_list queue
    = gl_list_create (GL_LINKED_LIST, NULL, NULL,
                      (gl_listelement_dispose_fn) si_bfs_free,
                      true, 1, (const void **) &init);
  si_bfs_node *node = NULL;
  // breadth-first search for a path of productions to the conflict symbol
  while (gl_list_size (queue) > 0)
    {
      node = (si_bfs_node *) gl_list_get_at (queue, 0);
      state_item *silast = &state_items[node->si];
      symbol_number sym = item_number_as_symbol_number (*silast->item);
      if (sym == conflict_sym)
        break;
      if (ISVAR (sym))
        {
          // add each production to the search
          bitset_iterator biter;
          state_item_number sin;
          bitset sib = silast->prods;
          BITSET_FOR_EACH (biter, sib, sin, 0)
            {
              // ignore productions already in the path
              if (si_bfs_contains (node, sin))
                continue;
              si_bfs_node *next = si_bfs_new (sin, node);
              gl_list_add_last (queue, next);
            }
          // for nullable nonterminals, add its goto to the search
          if (nullable[sym - ntokens])
            {
              si_bfs_node *next = si_bfs_new (silast->trans, node);
              gl_list_add_last (queue, next);
            }
        }
      gl_list_remove_at (queue, 0);
    }
  if (gl_list_size (queue) == 0)
    {
      gl_list_free (queue);
      fputs ("Error expanding derivation\n", stderr);
      abort ();
    }

  derivation *dinit = derivation_new_leaf (conflict_sym);
  derivation_list result = derivation_list_new ();
  derivation_list_append (result, dinit);
  // iterate backwards through the generated path to create a derivation
  // of the conflict symbol containing derivations of each production step.

  for (si_bfs_node *n = node; n != NULL; n = n->parent)
    {
      state_item *si = &state_items[n->si];
      item_number *pos = si->item;
      if (SI_PRODUCTION (si))
        {
          item_number *i = NULL;
          for (i = pos + 1; !item_number_is_rule_number (*i); ++i)
            derivation_list_append (result, derivation_new_leaf (*i));
          symbol_number lhs =
            rules[item_number_as_rule_number (*i)].lhs->number;
          derivation *deriv = derivation_new (lhs, result,
                                              state_item_rule (si));
          result = derivation_list_new ();
          derivation_list_append (result, deriv);
        }
      else
        {
          symbol_number sym = item_number_as_symbol_number (*(pos - 1));
          derivation *deriv = derivation_new_leaf (sym);
          derivation_list_prepend (result, deriv);
        }
    }
  gl_list_free (queue);
  derivation_free ((derivation*)gl_list_get_at (result, 0));
  gl_list_remove_at (result, 0);
  return result;
}

/**
 * Complete derivations for any pending productions in the given
 * sequence of state-items. For example, the input could be a path
 * of states that would give us the following input:
 * Stmt ::= [lval ::= [VAR] '=' e ::=[ e::=['0'] '+' •
 * So to complete the derivation of Stmt, we need an output like:
 * Stmt ::= [lval ::= [VAR] '=' e ::=[ e::=['0'] '+' • e ] ';' ]
 */
static derivation *
complete_diverging_example (symbol_number conflict_sym,
                            state_item_list path, derivation_list derivs)
{
  // The idea is to transfer each pending symbol on the productions
  // associated with the given StateItems to the resulting derivation.
  derivation_list result = derivation_list_new ();
  bool lookahead_required = false;
  if (!derivs)
    {
      derivs = derivation_list_new ();
      gl_list_add_last (result, derivation_dot ());
      lookahead_required = true;
    }

  gl_list_node_t deriv = list_get_end (derivs);

  // We go backwards through the path to create the derivation tree bottom-up.
  // Effectively this loops through each production once, and generates a
  // derivation of the left hand side by appending all of the rhs symbols.
  // this becomes the derivation of the nonterminal after the dot in the
  // next production, and all of the other symbols of the rule are added as normal.
  for (gl_list_node_t state_node = list_get_end (path);
       state_node != NULL;
       state_node = gl_list_previous_node (path, state_node))
    {
      state_item *si = (state_item *) gl_list_node_value (path, state_node);
      item_number *item = si->item;
      item_number pos = *item;
      // symbols after dot
      if (gl_list_size (result) == 1 && !item_number_is_rule_number (pos)
          && gl_list_get_at (result, 0) == derivation_dot ())
        {
          derivation_list_append (result,
            derivation_new_leaf (item_number_as_symbol_number (pos)));
          lookahead_required = false;
        }
      item_number *i = item;
      // go through each symbol after the dot in the current rule, and
      // add each symbol to its derivation.
      for (state_item_number nsi = si - state_items;
           !item_number_is_rule_number (*i);
           ++i, nsi = state_items[nsi].trans)
        {
          // if the item is a reduction, we could skip to the wrong rule
          // by starting at i + 1, so this continue is necessary
          if (i == item)
            continue;
          symbol_number sym = item_number_as_symbol_number (*i);
          if (!lookahead_required || sym == conflict_sym)
            {
              derivation_list_append (result, derivation_new_leaf (sym));
              lookahead_required = false;
              continue;
            }
          // Since PATH is a path to the conflict state-item,
          // for a reduce conflict item, we will want to have a derivation
          // that shows the conflict symbol from its lookahead set being used.
          //
          // Since reductions have the dot at the end of the item,
          // this loop will be first executed on the last item in the path
          // that's not a reduction. When that happens,
          // the symbol after the dot should be a nonterminal,
          // and we can look through successive nullable nonterminals
          // for one with the conflict symbol in its first set.
          if (bitset_test (FIRSTS (sym), conflict_sym))
            {
              lookahead_required = false;
              derivation_list next_derivs =
                expand_to_conflict (nsi, conflict_sym);
              derivation *d = NULL;
              for (gl_list_iterator_t it = gl_list_iterator (next_derivs);
                   derivation_list_next (&it, &d);)
                derivation_list_append (result, d);
              i += gl_list_size (next_derivs) - 1;
              derivation_list_free (next_derivs);
            }
          else if (nullable[sym - ntokens])
            {
              derivation *d = derivation_new_leaf (sym);
              derivation_list_append (result, d);
            }
          else
            {
              // We found a path to the conflict item, and despite it
              // having the conflict symbol in its lookahead, no example
              // containing the symbol after the conflict item
              // can be found.
              derivation_list_append (result, derivation_new_leaf (1));
              lookahead_required = false;
            }
        }
      const rule *r = &rules[item_number_as_rule_number (*i)];
      // add derivations for symbols before dot
      for (i = item - 1; !item_number_is_rule_number (*i) && i >= ritem; i--)
        {
          gl_list_node_t p = gl_list_previous_node (path, state_node);
          if (p)
            state_node = p;
          if (deriv)
            {
              const void *tmp_deriv = gl_list_node_value (derivs, deriv);
              deriv = gl_list_previous_node (derivs, deriv);
              derivation_list_prepend (result, (derivation*)tmp_deriv);
            }
          else
            derivation_list_prepend (result, derivation_new_leaf (*i));
        }
      // completing the derivation
      derivation *new_deriv = derivation_new (r->lhs->number, result, r);
      result = derivation_list_new ();
      derivation_list_append (result, new_deriv);
    }
  derivation *res = (derivation *) gl_list_get_at (result, 0);
  derivation_retain (res);
  derivation_list_free (result);
  derivation_list_free (derivs);
  return res;
}

/* Iterate backwards through the shifts of the path in the reduce
   conflict, and find a path of shifts from the shift conflict that
   goes through the same states. */
static state_item_list
nonunifying_shift_path (state_item_list reduce_path, state_item *shift_conflict)
{
  gl_list_node_t tmp = gl_list_add_last (reduce_path, NULL);
  gl_list_node_t next_node = gl_list_previous_node (reduce_path, tmp);
  gl_list_node_t node = gl_list_previous_node (reduce_path, next_node);
  gl_list_remove_node (reduce_path, tmp);
  state_item *si = shift_conflict;
  state_item_list result =
    gl_list_create_empty (GL_LINKED_LIST, NULL, NULL, NULL, true);
  // FIXME: bool paths_merged;
  for (; node != NULL; next_node = node,
       node = gl_list_previous_node (reduce_path, node))
    {
      state_item *refsi =
        (state_item *) gl_list_node_value (reduce_path, node);
      state_item *nextrefsi =
        (state_item *) gl_list_node_value (reduce_path, next_node);
      if (nextrefsi == si)
        {
          gl_list_add_first (result, refsi);
          si = refsi;
          continue;
        }
      // skip reduction items
      if (nextrefsi->item != refsi->item + 1 && refsi->item != ritem)
        continue;

      // bfs to find a shift to the right state
      si_bfs_node *init = si_bfs_new (si - state_items, NULL);
      si_bfs_node_list queue
        = gl_list_create (GL_LINKED_LIST, NULL, NULL,
                          (gl_listelement_dispose_fn) si_bfs_free,
                          true, 1, (const void **) &init);
      si_bfs_node *sis = NULL;
      state_item *prevsi = NULL;
      while (gl_list_size (queue) > 0)
        {
          sis = (si_bfs_node *) gl_list_get_at (queue, 0);
          // if we end up in the start state, the shift couldn't be found.
          if (sis->si == 0)
            break;

          state_item *search_si = &state_items[sis->si];
          // if the current state-item is a production item,
          // its reverse production items get added to the queue.
          // Otherwise, look for a reverse transition to the target state.
          bitset rsi = search_si->revs;
          bitset_iterator biter;
          state_item_number sin;
          BITSET_FOR_EACH (biter, rsi, sin, 0)
            {
              prevsi = &state_items[sin];
              if (SI_TRANSITION (search_si))
                {
                  if (prevsi->state == refsi->state)
                    goto search_end;
                }
              else if (!si_bfs_contains (sis, sin))
                {
                  si_bfs_node *prevsis = si_bfs_new (sin, sis);
                  gl_list_add_last (queue, prevsis);
                }
            }
          gl_list_remove_at (queue, 0);
        }
    search_end:
      // prepend path to shift we found
      if (sis)
        {
          gl_list_node_t ln = gl_list_add_first (result, &state_items[sis->si]);
          for (si_bfs_node *n = sis->parent; n; n = n->parent)
            ln = gl_list_add_after (result, ln, &state_items[n->si]);

        }
      si = prevsi;
      gl_list_free (queue);
    }
  if (trace_flag & trace_cex)
    {
      fputs ("SHIFT ITEM PATH:\n", stderr);
      state_item *sip = NULL;
      for (gl_list_iterator_t it = gl_list_iterator (result);
           state_item_list_next (&it, &sip);
           )
        state_item_print (sip, stderr, "");
    }
  return result;
}


/**
 * Construct a nonunifying counterexample from the shortest
 * lookahead-sensitive path.
 */
static counterexample *
example_from_path (bool shift_reduce,
                   state_item_number itm2,
                   state_item_list shortest_path, symbol_number next_sym)
{
  derivation *deriv1 =
    complete_diverging_example (next_sym, shortest_path, NULL);
  state_item_list path_2
    = shift_reduce
    ? nonunifying_shift_path (shortest_path, &state_items [itm2])
    : shortest_path_from_start (itm2, next_sym);
  derivation *deriv2 = complete_diverging_example (next_sym, path_2, NULL);
  gl_list_free (path_2);
  return new_counterexample (deriv1, deriv2, shift_reduce, false, true);
}

/*
 *
 * UNIFYING COUNTER EXAMPLES
 *
 */

/* A search state keeps track of two parser simulations,
 * one starting at each conflict. Complexity is a metric
 * which sums different parser actions with varying weights.
 */
typedef struct
{
  parse_state *states[2];
  int complexity;
} search_state;

static search_state *
initial_search_state (state_item *conflict1, state_item *conflict2)
{
  search_state *res = xmalloc (sizeof *res);
  res->states[0] = new_parse_state (conflict1);
  res->states[1] = new_parse_state (conflict2);
  parse_state_retain (res->states[0]);
  parse_state_retain (res->states[1]);
  res->complexity = 0;
  return res;
}

static search_state *
new_search_state (parse_state *ps1, parse_state *ps2, int complexity)
{
  search_state *res = xmalloc (sizeof *res);
  res->states[0] = ps1;
  res->states[1] = ps2;
  parse_state_retain (res->states[0]);
  parse_state_retain (res->states[1]);
  res->complexity = complexity;
  return res;
}

static search_state *
copy_search_state (search_state *parent)
{
  search_state *res = xmalloc (sizeof *res);
  *res = *parent;
  parse_state_retain (res->states[0]);
  parse_state_retain (res->states[1]);
  return res;
}

static void
search_state_free_children (search_state *ss)
{
  free_parse_state (ss->states[0]);
  free_parse_state (ss->states[1]);
}

static void
search_state_free (search_state *ss)
{
  if (ss == NULL)
    return;
  search_state_free_children (ss);
  free (ss);
}

/* For debugging traces.  */
static void
search_state_print (search_state *ss)
{
  fputs ("CONFLICT 1 ", stderr);
  print_parse_state (ss->states[0]);
  fputs ("CONFLICT 2 ", stderr);
  print_parse_state (ss->states[1]);
  putc ('\n', stderr);
}

typedef gl_list_t search_state_list;

static inline bool
search_state_list_next (gl_list_iterator_t *it, search_state **ss)
{
  const void *p = NULL;
  bool res = gl_list_iterator_next (it, &p, NULL);
  if (res)
    *ss = (search_state*) p;
  else
    gl_list_iterator_free (it);
  return res;
}

/*
 * When a search state is copied, this is used to
 * directly set one of the parse states
 */
static inline void
ss_set_parse_state (search_state *ss, int idx, parse_state *ps)
{
  free_parse_state (ss->states[idx]);
  ss->states[idx] = ps;
  parse_state_retain (ps);
}

/*
 * Construct a nonunifying example from a search state
 * which has its parse states unified at the beginning
 * but not the end of the example.
 */
static counterexample *
complete_diverging_examples (search_state *ss,
                             symbol_number next_sym,
                             bool shift_reduce)
{
  derivation *new_derivs[2];
  for (int i = 0; i < 2; ++i)
    {
      state_item_list sitems;
      derivation_list derivs;
      parse_state_lists (ss->states[i], &sitems, &derivs);
      new_derivs[i] = complete_diverging_example (next_sym, sitems, derivs);
      gl_list_free (sitems);
    }
  return new_counterexample (new_derivs[0], new_derivs[1],
                             shift_reduce, false, true);
}

/*
 * Search states are stored in bundles with those that
 * share the same complexity. This is so the priority
 * queue takes less overhead.
 */
typedef struct
{
  search_state_list states;
  int complexity;
} search_state_bundle;

static void
ssb_free (search_state_bundle *ssb)
{
  gl_list_free (ssb->states);
  free (ssb);
}

static size_t
ssb_hasher (search_state_bundle *ssb)
{
  return ssb->complexity;
}

static int
ssb_comp (const search_state_bundle *s1, const search_state_bundle *s2)
{
  return s1->complexity - s2->complexity;
}

static bool
ssb_equals (const search_state_bundle *s1, const search_state_bundle *s2)
{
  return s1->complexity == s2->complexity;
}

typedef gl_list_t ssb_list;

static size_t
visited_hasher (const search_state *ss, size_t max)
{
  return (parse_state_hasher (ss->states[0], max)
          + parse_state_hasher (ss->states[1], max)) % max;
}

static bool
visited_comparator (const search_state *ss1, const search_state *ss2)
{
  return parse_state_comparator (ss1->states[0], ss2->states[0])
    && parse_state_comparator (ss1->states[1], ss2->states[1]);
}

/* Priority queue for search states with minimal complexity. */
static ssb_list ssb_queue;
static Hash_table *visited;
/* The set of parser states on the shortest lookahead-sensitive path. */
static bitset scp_set = NULL;
/* The set of parser states used for the conflict reduction rule. */
static bitset rpp_set = NULL;

static void
ssb_append (search_state *ss)
{
  if (hash_lookup (visited, ss))
    {
      search_state_free (ss);
      return;
    }
  hash_xinsert (visited, ss);
  // if states are only referenced by the visited set,
  // their contents should be freed as we only need
  // the metadata necessary to compute a hash.
  parse_state_free_contents_early (ss->states[0]);
  parse_state_free_contents_early (ss->states[1]);
  parse_state_retain (ss->states[0]);
  parse_state_retain (ss->states[1]);
  search_state_bundle *ssb = xmalloc (sizeof *ssb);
  ssb->complexity = ss->complexity;
  gl_list_node_t n = gl_list_search (ssb_queue, ssb);
  if (!n)
    {
      ssb->states =
        gl_list_create_empty (GL_LINKED_LIST, NULL, NULL,
                              (gl_listelement_dispose_fn)search_state_free_children,
                              true);
      gl_sortedlist_add (ssb_queue, (gl_listelement_compar_fn) ssb_comp, ssb);
    }
  else
    {
      free (ssb);
      ssb = (search_state_bundle *) gl_list_node_value (ssb_queue, n);
    }
  gl_list_add_last (ssb->states, ss);
}

/*
 * The following functions perform various actions on parse states
 * and assign complexities to the newly generated search states.
 */
static void
production_step (search_state *ss, int parser_state)
{
  const state_item *other_si = parse_state_tail (ss->states[1 - parser_state]);
  symbol_number other_sym = item_number_as_symbol_number (*other_si->item);
  parse_state_list prods =
    simulate_production (ss->states[parser_state], other_sym);
  int complexity = ss->complexity + PRODUCTION_COST;

  parse_state *ps = NULL;
  for (gl_list_iterator_t it = gl_list_iterator (prods);
       parse_state_list_next (&it, &ps);
       )
    {
      search_state *copy = copy_search_state (ss);
      ss_set_parse_state (copy, parser_state, ps);
      copy->complexity = complexity;
      ssb_append (copy);
    }
  gl_list_free (prods);
}

static inline int
reduction_cost (const parse_state *ps)
{
  int shifts;
  int productions;
  parse_state_completed_steps (ps, &shifts, &productions);
  return SHIFT_COST * shifts + PRODUCTION_COST * productions;
}

static search_state_list
reduction_step (search_state *ss, const item_number *conflict_item,
                int parser_state, int rule_len)
{
  (void) conflict_item; // FIXME: Unused
  search_state_list result =
    gl_list_create_empty (GL_LINKED_LIST, NULL, NULL, NULL, 1);

  parse_state *ps = ss->states[parser_state];
  const state_item *si = parse_state_tail (ps);
  bitset symbol_set = si->lookahead;
  parse_state *other = ss->states[1 - parser_state];
  const state_item *other_si = parse_state_tail (other);
  // if the other state can transition on a symbol,
  // the reduction needs to have that symbol in its lookahead
  if (item_number_is_symbol_number (*other_si->item))
    {
      symbol_number other_sym =
        item_number_as_symbol_number (*other_si->item);
      if (!intersect_symbol (other_sym, symbol_set))
        return result;
      symbol_set = bitset_create (nsyms, BITSET_FIXED);
      bitset_set (symbol_set, other_sym);
    }

  // FIXME: search_state *new_root = copy_search_state (ss);
  parse_state_list reduced =
    simulate_reduction (ps, rule_len, symbol_set);
  parse_state *reduced_ps = NULL;
  for (gl_list_iterator_t it = gl_list_iterator (reduced);
       parse_state_list_next (&it, &reduced_ps);
       )
    {
      search_state *copy = copy_search_state (ss);
      ss_set_parse_state (copy, parser_state, reduced_ps);
      int r_cost = reduction_cost (reduced_ps);
      copy->complexity += r_cost + PRODUCTION_COST + 2 * SHIFT_COST;
      gl_list_add_last (result, copy);
    }
  gl_list_free (reduced);
  if (symbol_set != si->lookahead)
    bitset_free (symbol_set);
  return result;
}

/**
 * Attempt to prepend the given symbol to this search state, respecting
 * the given subsequent next symbol on each path. If a reverse transition
 * cannot be made on both states, possible reverse productions are prepended
 */
static void
search_state_prepend (search_state *ss, symbol_number sym, bitset guide)
{
  (void) sym; // FIXME: Unused.
  const state_item *si1src = parse_state_head (ss->states[0]);
  const state_item *si2src = parse_state_head (ss->states[1]);

  bool prod1 = SI_PRODUCTION (si1src);
  // If one can make a reverse transition and the other can't, only apply
  // the reverse productions that the other state can make in an attempt to
  // make progress.
  if (prod1 != SI_PRODUCTION (si2src))
    {
      int prod_state = prod1 ? 0 : 1;
      parse_state_list prev = parser_prepend (ss->states[prod_state]);
      parse_state *ps = NULL;
      for (gl_list_iterator_t iter = gl_list_iterator (prev);
           parse_state_list_next (&iter, &ps);
           )
        {
          const state_item *psi = parse_state_head (ps);
          bool guided = bitset_test (guide, psi->state->number);
          if (!guided && !EXTENDED_SEARCH)
            continue;

          search_state *copy = copy_search_state (ss);
          ss_set_parse_state (copy, prod_state, ps);
          copy->complexity += PRODUCTION_COST;
          if (!guided)
            copy->complexity += EXTENDED_COST;
          ssb_append (copy);
        }
      gl_list_free (prev);
      return;
    }
  // The parse state heads are either both production items or both
  // transition items. So all prepend options will either be
  // reverse transitions or reverse productions
  int complexity_cost = prod1 ? PRODUCTION_COST : UNSHIFT_COST;
  complexity_cost *= 2;

  parse_state_list prev1 = parser_prepend (ss->states[0]);
  parse_state_list prev2 = parser_prepend (ss->states[1]);

  // loop through each pair of possible prepend states and append search
  // states for each pair where the parser states correspond to the same
  // parsed input.
  parse_state *ps1 = NULL;
  for (gl_list_iterator_t iter1 = gl_list_iterator (prev1);
       parse_state_list_next (&iter1, &ps1);
       )
    {
      const state_item *psi1 = parse_state_head (ps1);
      bool guided1 = bitset_test (guide, psi1->state->number);
      if (!guided1 && !EXTENDED_SEARCH)
        continue;

      parse_state *ps2 = NULL;
      for (gl_list_iterator_t iter2 = gl_list_iterator (prev2);
           parse_state_list_next (&iter2, &ps2);
           )
        {
          const state_item *psi2 = parse_state_head (ps2);

          bool guided2 = bitset_test (guide, psi2->state->number);
          if (!guided2 && !EXTENDED_SEARCH)
            continue;
          // Only consider prepend state items that share the same state.
          if (psi1->state != psi2->state)
            continue;

          int complexity = ss->complexity;
          if (prod1)
            complexity += PRODUCTION_COST * 2;
          else
            complexity += UNSHIFT_COST * 2;
          // penalty for not being along the guide path
          if (!guided1 || !guided2)
            complexity += EXTENDED_COST;
          ssb_append (new_search_state (ps1, ps2, complexity));
        }
    }
  gl_list_free (prev1);
  gl_list_free (prev2);
}

/**
 * Determine if the productions associated with the given parser items have
 * the same prefix up to the dot.
 */
static bool
have_common_prefix (const item_number *itm1, const item_number *itm2)
{
  int i = 0;
  for (; !item_number_is_rule_number (itm1[i]); ++i)
    if (itm1[i] != itm2[i])
      return false;
  return item_number_is_rule_number (itm2[i]);
}

/*
 * The start and end locations of an item in ritem.
 */
static const item_number *
item_rule_start (const item_number *item)
{
  const item_number *res = NULL;
  for (res = item;
       ritem < res && item_number_is_symbol_number (*(res - 1));
       --res)
    continue;
  return res;
}

static const item_number *
item_rule_end (const item_number *item)
{
  const item_number *res = NULL;
  for (res = item; item_number_is_symbol_number (*res); ++res)
    continue;
  return res;
}

/*
 * Perform the appropriate possible parser actions
 * on a search state and add the results to the
 * search state priority queue.
 */
static inline void
generate_next_states (search_state *ss, state_item *conflict1,
                      state_item *conflict2)
{
  // Compute the successor configurations.
  parse_state *ps1 = ss->states[0];
  parse_state *ps2 = ss->states[1];
  const state_item *si1 = parse_state_tail (ps1);
  const state_item *si2 = parse_state_tail (ps2);
  bool si1reduce = item_number_is_rule_number (*si1->item);
  bool si2reduce = item_number_is_rule_number (*si2->item);
  if (!si1reduce && !si2reduce)
    {
      // Transition if both paths end at the same symbol
      if (*si1->item == *si2->item)
        {
          int complexity = ss->complexity + 2 * SHIFT_COST;
          parse_state_list trans1 = simulate_transition (ps1);
          parse_state_list trans2 = simulate_transition (ps2);
          parse_state *tps1 = NULL;
          parse_state *tps2 = NULL;
          for (gl_list_iterator_t it1 = gl_list_iterator (trans1);
               parse_state_list_next (&it1, &tps1);
               )
            for (gl_list_iterator_t it2 = gl_list_iterator (trans2);
                 parse_state_list_next (&it2, &tps2);
                 )
              ssb_append (new_search_state (tps1, tps2, complexity));
          gl_list_free (trans1);
          gl_list_free (trans2);
        }

      // Take production steps if possible.
      production_step (ss, 0);
      production_step (ss, 1);
    }
  // One of the states requires a reduction
  else
    {
      const item_number *rhs1 = item_rule_start (si1->item);
      const item_number *rhe1 = item_rule_end (si1->item);
      int len1 = rhe1 - rhs1;
      int size1 = parse_state_length (ps1);
      bool ready1 = si1reduce && len1 < size1;

      const item_number *rhs2 = item_rule_start (si2->item);
      const item_number *rhe2 = item_rule_end (si2->item);
      int len2 = rhe2 - rhs2;
      int size2 = parse_state_length (ps2);
      bool ready2 = si2reduce && len2 < size2;
      // If there is a path ready for reduction without being
      // prepended further, reduce.
      if (ready1 && ready2)
        {
          search_state_list reduced1 = reduction_step (ss, conflict1->item, 0, len1);
          gl_list_add_last (reduced1, ss);
          search_state *red1 = NULL;
          for (gl_list_iterator_t iter = gl_list_iterator (reduced1);
               search_state_list_next (&iter, &red1);
               )
            {
              search_state_list reduced2 =
                reduction_step (red1, conflict2->item, 1, len2);
              search_state *red2 = NULL;
              for (gl_list_iterator_t iter2 = gl_list_iterator (reduced2);
                   search_state_list_next (&iter2, &red2);
                   )
                ssb_append (red2);
              // Avoid duplicates.
              if (red1 != ss)
                ssb_append (red1);
              gl_list_free (reduced2);
            }
          gl_list_free (reduced1);
        }
      else if (ready1)
        {
          search_state_list reduced1 = reduction_step (ss, conflict1->item, 0, len1);
          search_state *red1 = NULL;
          for (gl_list_iterator_t iter = gl_list_iterator (reduced1);
               search_state_list_next (&iter, &red1);
               )
            ssb_append (red1);
          gl_list_free (reduced1);
        }
      else if (ready2)
        {
          search_state_list reduced2 = reduction_step (ss, conflict2->item, 1, len2);
          search_state *red2 = NULL;
          for (gl_list_iterator_t iter2 = gl_list_iterator (reduced2);
               search_state_list_next (&iter2, &red2);
               )
            ssb_append (red2);
          gl_list_free (reduced2);
        }
      /* Both states end with a reduction, yet they don't have enough symbols
       * to reduce. This means symbols are missing from the beginning of the
       * rule, so we must prepend */
      else
        {
          const symbol_number sym
            = si1reduce && !ready1
            ? *(rhe1 - size1)
            : *(rhe2 - size2);
          search_state_prepend (ss, sym,
                                parse_state_depth (ss->states[0]) >= 0
                                ? rpp_set : scp_set);
        }
    }
}

/*
 * Perform the actual counterexample search,
 * keeps track of what stage of the search algorithm
 * we are at and gives the appropriate counterexample
 * type based off of time constraints.
 */
static counterexample *
unifying_example (state_item_number itm1,
                  state_item_number itm2,
                  bool shift_reduce,
                  state_item_list reduce_path, symbol_number next_sym)
{
  state_item *conflict1 = &state_items[itm1];
  state_item *conflict2 = &state_items[itm2];
  search_state *initial = initial_search_state (conflict1, conflict2);
  ssb_queue = gl_list_create_empty (GL_RBTREEHASH_LIST,
                                    (gl_listelement_equals_fn) ssb_equals,
                                    (gl_listelement_hashcode_fn) ssb_hasher,
                                    (gl_listelement_dispose_fn) ssb_free,
                                    false);
  visited =
    hash_initialize (32, NULL, (Hash_hasher) visited_hasher,
                     (Hash_comparator) visited_comparator,
                     (Hash_data_freer) search_state_free);
  ssb_append (initial);
  time_t start = time (NULL);
  bool assurance_printed = false;
  search_state *stage3result = NULL;
  counterexample *cex = NULL;
  while (gl_list_size (ssb_queue) > 0)
    {
      const search_state_bundle *ssb = gl_list_get_at (ssb_queue, 0);

      search_state *ss = NULL;
      for (gl_list_iterator_t it = gl_list_iterator (ssb->states);
           search_state_list_next (&it, &ss);
           )
        {
          if (trace_flag & trace_cex)
            search_state_print (ss);
          // Stage 1/2 completing the rules containing the conflicts
          parse_state *ps1 = ss->states[0];
          parse_state *ps2 = ss->states[1];
          if (parse_state_depth (ps1) < 0 && parse_state_depth (ps2) < 0)
            {
              // Stage 3: reduce and shift conflict items completed.
              const state_item *si1src = parse_state_head (ps1);
              const state_item *si2src = parse_state_head (ps2);
              if (item_rule (si1src->item)->lhs == item_rule (si2src->item)->lhs
                  && have_common_prefix (si1src->item, si2src->item))
                {
                  // Stage 4: both paths share a prefix
                  derivation *d1 = parse_state_derivation (ps1);
                  derivation *d2 = parse_state_derivation (ps2);
                  if (parse_state_derivation_completed (ps1)
                      && parse_state_derivation_completed (ps2))
                    {
                      // Once we have two derivations for the same symbol,
                      // we've found a unifying counterexample.
                      cex = new_counterexample (d1, d2, shift_reduce, true, false);
                      derivation_retain (d1);
                      derivation_retain (d2);
                      goto cex_search_end;
                    }
                  if (!stage3result)
                    stage3result = copy_search_state (ss);
                }
            }
          if (TIME_LIMIT_ENFORCED)
            {
              double time_passed = difftime (time (NULL), start);
              if (!assurance_printed && time_passed > ASSURANCE_LIMIT
                  && stage3result)
                {
                  fputs ("Productions leading up to the conflict state found.  "
                         "Still finding a possible unifying counterexample...",
                         stderr);
                  assurance_printed = true;
                }
              if (time_passed > time_limit)
                {
                  fprintf (stderr, "time limit exceeded: %f\n", time_passed);
                  goto cex_search_end;
                }
            }
          generate_next_states (ss, conflict1, conflict2);
        }
      gl_sortedlist_remove (ssb_queue,
                            (gl_listelement_compar_fn) ssb_comp, ssb);
    }
cex_search_end:;
  if (!cex)
    {
      // No unifying counterexamples
      // If a search state from Stage 3 is available, use it
      // to construct a more compact nonunifying counterexample.
      if (stage3result)
        cex = complete_diverging_examples (stage3result, next_sym, shift_reduce);
      // Otherwise, construct a nonunifying counterexample that
      // begins from the start state using the shortest
      // lookahead-sensitive path to the reduce item.
      else
        cex = example_from_path (shift_reduce, itm2, reduce_path, next_sym);
    }
  gl_list_free (ssb_queue);
  hash_free (visited);
  if (stage3result)
    search_state_free (stage3result);
  return cex;
}

static time_t cumulative_time;

void
counterexample_init (void)
{
  /* Recognize $TIME_LIMIT.  Not a public feature, just to help
     debugging.  If we need something public, a %define/-D/-F variable
     would be more appropriate. */
  {
    const char *cp = getenv ("TIME_LIMIT");
    if (cp)
      {
        char *end = NULL;
        double v = strtod (cp, &end);
        if (*end == '\0' && errno == 0)
          time_limit = v;
      }
    }
  time (&cumulative_time);
  scp_set = bitset_create (nstates, BITSET_FIXED);
  rpp_set = bitset_create (nstates, BITSET_FIXED);
  state_items_init ();
}


void
counterexample_free (void)
{
  if (scp_set)
    {
      bitset_free (scp_set);
      bitset_free (rpp_set);
      state_items_free ();
    }
}

/**
 * Report a counterexample for conflict on symbol next_sym
 * between the given state-items
 */
static void
counterexample_report (state_item_number itm1, state_item_number itm2,
                       symbol_number next_sym, bool shift_reduce,
                       FILE *out, const char *prefix)
{
  // Compute the shortest lookahead-sensitive path and associated sets of
  // parser states.
  state_item_list shortest_path = shortest_path_from_start (itm1, next_sym);
  bool reduce_prod_reached = false;
  const rule *reduce_rule = item_rule (state_items[itm1].item);

  bitset_zero (scp_set);
  bitset_zero (rpp_set);

  state_item *si = NULL;
  for (gl_list_iterator_t it = gl_list_iterator (shortest_path);
       state_item_list_next (&it, &si);
       )
    {
      bitset_set (scp_set, si->state->number);
      reduce_prod_reached = reduce_prod_reached
                          || item_rule (si->item) == reduce_rule;
      if (reduce_prod_reached)
        bitset_set (rpp_set, si->state->number);
    }
  time_t t = time (NULL);
  counterexample *cex
    = difftime (t, cumulative_time) < CUMULATIVE_TIME_LIMIT
    ? unifying_example (itm1, itm2, shift_reduce, shortest_path, next_sym)
    : example_from_path (shift_reduce, itm2, shortest_path, next_sym);

  gl_list_free (shortest_path);
  counterexample_print (cex, out, prefix);
  free_counterexample (cex);
}


// ITM1 denotes a shift, ITM2 a reduce.
static void
counterexample_report_shift_reduce (state_item_number itm1, state_item_number itm2,
                                    symbol_number next_sym,
                                    FILE *out, const char *prefix)
{
  if (out == stderr)
    complain (NULL, Wcounterexamples,
              _("shift/reduce conflict on token %s"), symbols[next_sym]->tag);
  else
    {
      fputs (prefix, out);
      fprintf (out, _("shift/reduce conflict on token %s"), symbols[next_sym]->tag);
      fprintf (out, "%s\n", _(":"));
    }
  // In the report, print the items.
  if (out != stderr || trace_flag & trace_cex)
    {
      state_item_print (&state_items[itm1], out, prefix);
      state_item_print (&state_items[itm2], out, prefix);
    }
  counterexample_report (itm1, itm2, next_sym, true, out, prefix);
}

static void
counterexample_report_reduce_reduce (state_item_number itm1, state_item_number itm2,
                                     bitset conflict_syms,
                                     FILE *out, const char *prefix)
{
  {
    struct obstack obstack;
    obstack_init (&obstack);
    bitset_iterator biter;
    state_item_number sym;
    const char *sep = "";
    BITSET_FOR_EACH (biter, conflict_syms, sym, 0)
      {
        obstack_printf (&obstack, "%s%s", sep, symbols[sym]->tag);
        sep = ", ";
      }
    char *tokens = obstack_finish0 (&obstack);
    if (out == stderr)
      complain (NULL, Wcounterexamples,
                ngettext ("reduce/reduce conflict on token %s",
                          "reduce/reduce conflict on tokens %s",
                          bitset_count (conflict_syms)),
                tokens);
    else
      {
        fputs (prefix, out);
        fprintf (out,
                 ngettext ("reduce/reduce conflict on token %s",
                           "reduce/reduce conflict on tokens %s",
                           bitset_count (conflict_syms)),
                 tokens);
        fprintf (out, "%s\n", _(":"));
      }
    obstack_free (&obstack, NULL);
  }
  // In the report, print the items.
  if (out != stderr || trace_flag & trace_cex)
    {
      state_item_print (&state_items[itm1], out, prefix);
      state_item_print (&state_items[itm2], out, prefix);
    }
  counterexample_report (itm1, itm2, bitset_first (conflict_syms),
                         false, out, prefix);
}

static state_item_number
find_state_item_number (const rule *r, state_number sn)
{
  for (state_item_number i = state_item_map[sn]; i < state_item_map[sn + 1]; ++i)
    if (!SI_DISABLED (i)
        && item_number_as_rule_number (*state_items[i].item) == r->number)
      return i;
  abort ();
}

void
counterexample_report_state (const state *s, FILE *out, const char *prefix)
{
  const state_number sn = s->number;
  const reductions *reds = s->reductions;
  bitset lookaheads = bitset_create (ntokens, BITSET_FIXED);
  for (int i = 0; i < reds->num; ++i)
    {
      const rule *r1 = reds->rules[i];
      const state_item_number c1 = find_state_item_number (r1, sn);
      for (state_item_number c2 = state_item_map[sn]; c2 < state_item_map[sn + 1]; ++c2)
        if (!SI_DISABLED (c2))
          {
            item_number conf = *state_items[c2].item;
            if (item_number_is_symbol_number (conf)
                && bitset_test (reds->lookaheads[i], conf))
              counterexample_report_shift_reduce (c1, c2, conf, out, prefix);
          }
      for (int j = i+1; j < reds->num; ++j)
        {
          const rule *r2 = reds->rules[j];
          // Conflicts: common lookaheads.
          bitset_intersection (lookaheads,
                               reds->lookaheads[i],
                               reds->lookaheads[j]);
          if (!bitset_empty_p (lookaheads))
            for (state_item_number c2 = state_item_map[sn]; c2 < state_item_map[sn + 1]; ++c2)
              if (!SI_DISABLED (c2)
                  && item_rule (state_items[c2].item) == r2)
                {
                  counterexample_report_reduce_reduce (c1, c2, lookaheads, out, prefix);
                  break;
                }
        }
    }
  bitset_free (lookaheads);
}