summaryrefslogtreecommitdiff
path: root/libs/math/doc/html/math_toolkit/ellint
diff options
context:
space:
mode:
authorLorry Tar Creator <lorry-tar-importer@baserock.org>2015-04-08 03:09:47 +0000
committer <>2015-05-05 14:37:32 +0000
commitf2541bb90af059680aa7036f315f052175999355 (patch)
treea5b214744b256f07e1dc2bd7273035a7808c659f /libs/math/doc/html/math_toolkit/ellint
parented232fdd34968697a68783b3195b1da4226915b5 (diff)
downloadboost-tarball-master.tar.gz
Imported from /home/lorry/working-area/delta_boost-tarball/boost_1_58_0.tar.bz2.HEADboost_1_58_0master
Diffstat (limited to 'libs/math/doc/html/math_toolkit/ellint')
-rw-r--r--libs/math/doc/html/math_toolkit/ellint/ellint_1.html14
-rw-r--r--libs/math/doc/html/math_toolkit/ellint/ellint_2.html14
-rw-r--r--libs/math/doc/html/math_toolkit/ellint/ellint_3.html28
-rw-r--r--libs/math/doc/html/math_toolkit/ellint/ellint_carlson.html63
-rw-r--r--libs/math/doc/html/math_toolkit/ellint/ellint_d.html175
-rw-r--r--libs/math/doc/html/math_toolkit/ellint/ellint_intro.html87
-rw-r--r--libs/math/doc/html/math_toolkit/ellint/heuman_lambda.html130
-rw-r--r--libs/math/doc/html/math_toolkit/ellint/jacobi_zeta.html139
8 files changed, 587 insertions, 63 deletions
diff --git a/libs/math/doc/html/math_toolkit/ellint/ellint_1.html b/libs/math/doc/html/math_toolkit/ellint/ellint_1.html
index aad7b996e..a741c516d 100644
--- a/libs/math/doc/html/math_toolkit/ellint/ellint_1.html
+++ b/libs/math/doc/html/math_toolkit/ellint/ellint_1.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Elliptic Integrals of the First Kind - Legendre Form</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../ellint.html" title="Elliptic Integrals">
<link rel="prev" href="ellint_carlson.html" title="Elliptic Integrals - Carlson Form">
<link rel="next" href="ellint_2.html" title="Elliptic Integrals of the Second Kind - Legendre Form">
@@ -59,7 +59,7 @@
= F(&#960;/2, k)</em></span>.
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/ellint_1.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/ellint_1.svg" align="middle"></span>
</p>
<p>
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
@@ -77,7 +77,7 @@
k)</em></span>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint2.svg"></span>
</p>
<p>
Requires -1 &lt;= k &lt;= 1, otherwise returns the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
@@ -98,7 +98,7 @@
Returns the complete elliptic integral of the first kind <span class="emphasis"><em>K(k)</em></span>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint6.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint6.svg"></span>
</p>
<p>
Requires -1 &lt;= k &lt;= 1, otherwise returns the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
@@ -240,13 +240,13 @@
relations:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint19.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint19.svg"></span>
</p>
<p>
and
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint20.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint20.svg"></span>
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
diff --git a/libs/math/doc/html/math_toolkit/ellint/ellint_2.html b/libs/math/doc/html/math_toolkit/ellint/ellint_2.html
index 80a42e359..8d43bc71d 100644
--- a/libs/math/doc/html/math_toolkit/ellint/ellint_2.html
+++ b/libs/math/doc/html/math_toolkit/ellint/ellint_2.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Elliptic Integrals of the Second Kind - Legendre Form</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../ellint.html" title="Elliptic Integrals">
<link rel="prev" href="ellint_1.html" title="Elliptic Integrals of the First Kind - Legendre Form">
<link rel="next" href="ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">
@@ -59,7 +59,7 @@
= E(&#960;/2, k)</em></span>.
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/ellint_2.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/ellint_2.svg" align="middle"></span>
</p>
<p>
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
@@ -77,7 +77,7 @@
k)</em></span>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint3.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint3.svg"></span>
</p>
<p>
Requires -1 &lt;= k &lt;= 1, otherwise returns the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
@@ -98,7 +98,7 @@
Returns the complete elliptic integral of the second kind <span class="emphasis"><em>E(k)</em></span>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint7.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint7.svg"></span>
</p>
<p>
Requires -1 &lt;= k &lt;= 1, otherwise returns the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
@@ -240,13 +240,13 @@
relations:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint21.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint21.svg"></span>
</p>
<p>
and
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint22.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint22.svg"></span>
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
diff --git a/libs/math/doc/html/math_toolkit/ellint/ellint_3.html b/libs/math/doc/html/math_toolkit/ellint/ellint_3.html
index fc706d8c6..7ba079056 100644
--- a/libs/math/doc/html/math_toolkit/ellint/ellint_3.html
+++ b/libs/math/doc/html/math_toolkit/ellint/ellint_3.html
@@ -3,11 +3,11 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Elliptic Integrals of the Third Kind - Legendre Form</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../ellint.html" title="Elliptic Integrals">
<link rel="prev" href="ellint_2.html" title="Elliptic Integrals of the Second Kind - Legendre Form">
-<link rel="next" href="../jacobi.html" title="Jacobi Elliptic Functions">
+<link rel="next" href="ellint_d.html" title="Elliptic Integral D - Legendre Form">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
@@ -20,7 +20,7 @@
</tr></table>
<hr>
<div class="spirit-nav">
-<a accesskey="p" href="ellint_2.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../jacobi.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
+<a accesskey="p" href="ellint_2.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="ellint_d.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
@@ -59,7 +59,7 @@
k) = E(n, &#960;/2, k)</em></span>.
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/ellint_3.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/ellint_3.svg" align="middle"></span>
</p>
<p>
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
@@ -78,7 +78,7 @@
&#966;, k)</em></span>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint4.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint4.svg"></span>
</p>
<p>
Requires <span class="emphasis"><em>-1 &lt;= k &lt;= 1</em></span> and <span class="emphasis"><em>n &lt; 1/sin<sup>2</sup>(&#966;)</em></span>,
@@ -101,7 +101,7 @@
Returns the complete elliptic integral of the first kind <span class="emphasis"><em>&#928;(n, k)</em></span>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint8.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint8.svg"></span>
</p>
<p>
Requires <span class="emphasis"><em>-1 &lt;= k &lt;= 1</em></span> and <span class="emphasis"><em>n &lt; 1</em></span>,
@@ -253,13 +253,13 @@
and
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint23.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint23.svg"></span>
</p>
<p>
Then if n &lt; 0 the relations (A&amp;S 17.7.15/16):
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint24.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint24.svg"></span>
</p>
<p>
are used to shift <span class="emphasis"><em>n</em></span> to the range [0, 1].
@@ -274,7 +274,7 @@
<span class="emphasis"><em>&#928;(n, &#966;+m&#960;, k) = &#928;(n, &#966;, k) + 2m&#928;(n, k) ; n &lt;= 1</em></span>
</p>
<p>
- <span class="emphasis"><em>&#928;(n, &#966;+m&#960;, k) = &#928;(n, &#966;, k) ; n &gt; 1</em></span> <a href="#ftn.math_toolkit.ellint.ellint_3.f0" class="footnote" name="math_toolkit.ellint.ellint_3.f0"><sup class="footnote">[1]</sup></a>
+ <span class="emphasis"><em>&#928;(n, &#966;+m&#960;, k) = &#928;(n, &#966;, k) ; n &gt; 1</em></span> <a href="#ftn.math_toolkit.ellint.ellint_3.f0" class="footnote"><sup class="footnote"><a name="math_toolkit.ellint.ellint_3.f0"></a>[1]</sup></a>
</p>
<p>
are used to move &#966; &#160; to the range [0, &#960;/2].
@@ -284,16 +284,16 @@
the relations:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint25.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint25.svg"></span>
</p>
<p>
and
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint26.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint26.svg"></span>
</p>
<div class="footnotes">
-<br><hr style="width:100; text-align:left;margin-left: 0">
+<br><hr style="width:100; align:left;">
<div id="ftn.math_toolkit.ellint.ellint_3.f0" class="footnote"><p><a href="#math_toolkit.ellint.ellint_3.f0" class="para"><sup class="para">[1] </sup></a>
I haven't been able to find a literature reference for this relation, but
it appears to be the convention used by Mathematica. Intuitively the first
@@ -315,7 +315,7 @@
</tr></table>
<hr>
<div class="spirit-nav">
-<a accesskey="p" href="ellint_2.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../jacobi.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
+<a accesskey="p" href="ellint_2.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="ellint_d.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>
diff --git a/libs/math/doc/html/math_toolkit/ellint/ellint_carlson.html b/libs/math/doc/html/math_toolkit/ellint/ellint_carlson.html
index 8b5465148..429802b76 100644
--- a/libs/math/doc/html/math_toolkit/ellint/ellint_carlson.html
+++ b/libs/math/doc/html/math_toolkit/ellint/ellint_carlson.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Elliptic Integrals - Carlson Form</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../ellint.html" title="Elliptic Integrals">
<link rel="prev" href="ellint_intro.html" title="Elliptic Integral Overview">
<link rel="next" href="ellint_1.html" title="Elliptic Integrals of the First Kind - Legendre Form">
@@ -79,6 +79,18 @@
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
+<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">ellint_rg</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
+</pre>
+<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_rg</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">y</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">z</span><span class="special">)</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_rg</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">y</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;)</span>
+
+<span class="special">}}</span> <span class="comment">// namespaces</span>
+</pre>
<h5>
<a name="math_toolkit.ellint.ellint_carlson.h1"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_carlson.description"></a></span><a class="link" href="ellint_carlson.html#math_toolkit.ellint.ellint_carlson.description">Description</a>
@@ -89,7 +101,7 @@
graph gives an idea of their behavior:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/ellint_carlson.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/ellint_carlson.svg" align="middle"></span>
</p>
<p>
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
@@ -106,7 +118,7 @@
Returns Carlson's Elliptic Integral R<sub>F</sub>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint9.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint9.svg"></span>
</p>
<p>
Requires that all of the arguments are non-negative, and at most one may
@@ -128,7 +140,7 @@
Returns Carlson's elliptic integral R<sub>D</sub>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint10.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint10.svg"></span>
</p>
<p>
Requires that x and y are non-negative, with at most one of them zero, and
@@ -150,7 +162,7 @@
Returns Carlson's elliptic integral R<sub>J</sub>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint11.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint11.svg"></span>
</p>
<p>
Requires that x, y and z are non-negative, with at most one of them zero,
@@ -167,7 +179,7 @@
principal value</a> using the relation:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint17.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint17.svg"></span>
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_rc</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">y</span><span class="special">)</span>
@@ -179,7 +191,7 @@
Returns Carlson's elliptic integral R<sub>C</sub>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint12.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint12.svg"></span>
</p>
<p>
Requires that <span class="emphasis"><em>x &gt; 0</em></span> and that <span class="emphasis"><em>y != 0</em></span>.
@@ -196,7 +208,29 @@
principal value</a> using the relation:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint18.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint18.svg"></span>
+ </p>
+<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_rg</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">y</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">z</span><span class="special">)</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_rg</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">y</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;)</span>
+</pre>
+<p>
+ Returns Carlson's elliptic integral R<sub>G</sub>:
+ </p>
+<p>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint27.svg"></span>
+ </p>
+<p>
+ Requires that x and y are non-negative, otherwise returns the result of
+ <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
+ </p>
+<p>
+ The final <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
+ be used to control the behaviour of the function: how it handles errors,
+ what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">policy
+ documentation for more details</a>.
</p>
<h5>
<a name="math_toolkit.ellint.ellint_carlson.h2"></a>
@@ -384,7 +418,7 @@
is the duplication theorem:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint13.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint13.svg"></span>
</p>
<p>
By applying it repeatedly, <span class="emphasis"><em>x</em></span>, <span class="emphasis"><em>y</em></span>,
@@ -392,12 +426,13 @@
the special case equation
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint16.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint16.svg"></span>
</p>
<p>
is used. More specifically, <span class="emphasis"><em>[R F]</em></span> is evaluated from
a Taylor series expansion to the fifth order. The calculations of the other
- three integrals are analogous.
+ three integrals are analogous, except for R<sub>C</sub> which can be computed from elementary
+ functions.
</p>
<p>
For <span class="emphasis"><em>p &lt; 0</em></span> in <span class="emphasis"><em>R<sub>J</sub>(x, y, z, p)</em></span>
@@ -406,10 +441,10 @@
principal values</a> are returned via the relations:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint17.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint17.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint18.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint18.svg"></span>
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
diff --git a/libs/math/doc/html/math_toolkit/ellint/ellint_d.html b/libs/math/doc/html/math_toolkit/ellint/ellint_d.html
new file mode 100644
index 000000000..5ded1ea3b
--- /dev/null
+++ b/libs/math/doc/html/math_toolkit/ellint/ellint_d.html
@@ -0,0 +1,175 @@
+<html>
+<head>
+<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
+<title>Elliptic Integral D - Legendre Form</title>
+<link rel="stylesheet" href="../../math.css" type="text/css">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
+<link rel="up" href="../ellint.html" title="Elliptic Integrals">
+<link rel="prev" href="ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">
+<link rel="next" href="jacobi_zeta.html" title="Jacobi Zeta Function">
+</head>
+<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
+<table cellpadding="2" width="100%"><tr>
+<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
+<td align="center"><a href="../../../../../../index.html">Home</a></td>
+<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
+<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
+<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
+<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
+</tr></table>
+<hr>
+<div class="spirit-nav">
+<a accesskey="p" href="ellint_3.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi_zeta.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
+</div>
+<div class="section">
+<div class="titlepage"><div><div><h3 class="title">
+<a name="math_toolkit.ellint.ellint_d"></a><a class="link" href="ellint_d.html" title="Elliptic Integral D - Legendre Form">Elliptic Integral D - Legendre
+ Form</a>
+</h3></div></div></div>
+<h5>
+<a name="math_toolkit.ellint.ellint_d.h0"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.ellint_d.synopsis"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.synopsis">Synopsis</a>
+ </h5>
+<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">ellint_d</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
+</pre>
+<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">);</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
+
+<span class="special">}}</span> <span class="comment">// namespaces</span>
+</pre>
+<h5>
+<a name="math_toolkit.ellint.ellint_d.h1"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.ellint_d.description"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.description">Description</a>
+ </h5>
+<p>
+ These two functions evaluate the incomplete elliptic integral <span class="emphasis"><em>D(&#966;,
+ k)</em></span> and its complete counterpart <span class="emphasis"><em>D(k) = D(&#960;/2, k)</em></span>.
+ </p>
+<p>
+ The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
+ type calculation rules</em></span></a> when the arguments are of different
+ types: when they are the same type then the result is the same type as the
+ arguments.
+ </p>
+<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
+</pre>
+<p>
+ Returns the incomplete elliptic integral:
+ </p>
+<p>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint_d.svg"></span>
+ </p>
+<p>
+ Requires <span class="emphasis"><em>-1 &lt;= k &lt;= 1</em></span>, otherwise returns the result
+ of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
+ (outside this range the result would be complex).
+ </p>
+<p>
+ The final <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
+ be used to control the behaviour of the function: how it handles errors,
+ what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">policy
+ documentation for more details</a>.
+ </p>
+<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">);</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
+</pre>
+<p>
+ Returns the complete elliptic integral <span class="emphasis"><em>D(k) = D(&#960;/2, k)</em></span>
+ </p>
+<p>
+ Requires <span class="emphasis"><em>-1 &lt;= k &lt;= 1</em></span> otherwise returns the result
+ of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
+ (outside this range the result would be complex).
+ </p>
+<p>
+ The final <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
+ be used to control the behaviour of the function: how it handles errors,
+ what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">policy
+ documentation for more details</a>.
+ </p>
+<h5>
+<a name="math_toolkit.ellint.ellint_d.h2"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.ellint_d.accuracy"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.accuracy">Accuracy</a>
+ </h5>
+<p>
+ These functions are trivially computed in terms of other elliptic integrals
+ and generally have very low error rates (a few epsilon) unless parameter
+ &#966;
+is very large, in which case the usual trigonometric function argument-reduction
+ issues apply.
+ </p>
+<h5>
+<a name="math_toolkit.ellint.ellint_d.h3"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.ellint_d.testing"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.testing">Testing</a>
+ </h5>
+<p>
+ The tests use a mixture of spot test values calculated using values calculated
+ at wolframalpha.com, and random test data generated using MPFR at 1000-bit
+ precision and a deliberately naive implementation in terms of the Legendre
+ integrals.
+ </p>
+<h5>
+<a name="math_toolkit.ellint.ellint_d.h4"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.ellint_d.implementation"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.implementation">Implementation</a>
+ </h5>
+<p>
+ The implementation for D(&#966;, k) first performs argument reduction using the
+ relations:
+ </p>
+<p>
+ <span class="emphasis"><em>D(-&#966;, k) = -D(&#966;, k)</em></span>
+ </p>
+<p>
+ and
+ </p>
+<p>
+ <span class="emphasis"><em>D(n&#960;+&#966;, k) = 2nD(k) + D(&#966;, k)</em></span>
+ </p>
+<p>
+ to move &#966; &#160; to the range [0, &#960;/2].
+ </p>
+<p>
+ The functions are then implemented in terms of Carlson's integral R<sub>D</sub>
+using
+ the relation:
+ </p>
+<p>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint_d.svg"></span>
+ </p>
+</div>
+<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
+<td align="left"></td>
+<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014 Nikhar Agrawal,
+ Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
+ Holin, Bruno Lalande, John Maddock, Johan R&#229;de, Gautam Sewani, Benjamin Sobotta,
+ Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
+ Distributed under the Boost Software License, Version 1.0. (See accompanying
+ file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
+ </p>
+</div></td>
+</tr></table>
+<hr>
+<div class="spirit-nav">
+<a accesskey="p" href="ellint_3.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi_zeta.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
+</div>
+</body>
+</html>
diff --git a/libs/math/doc/html/math_toolkit/ellint/ellint_intro.html b/libs/math/doc/html/math_toolkit/ellint/ellint_intro.html
index 61ea6f381..839f1fc0e 100644
--- a/libs/math/doc/html/math_toolkit/ellint/ellint_intro.html
+++ b/libs/math/doc/html/math_toolkit/ellint/ellint_intro.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Elliptic Integral Overview</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../ellint.html" title="Elliptic Integrals">
<link rel="prev" href="../ellint.html" title="Elliptic Integrals">
<link rel="next" href="ellint_carlson.html" title="Elliptic Integrals - Carlson Form">
@@ -58,7 +58,7 @@
<span class="phrase"><a name="math_toolkit.ellint.ellint_intro.definition"></a></span><a class="link" href="ellint_intro.html#math_toolkit.ellint.ellint_intro.definition">Definition</a>
</h5>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint1.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint1.svg"></span>
</p>
<p>
is called elliptic integral if <span class="emphasis"><em>R(t, s)</em></span> is a rational
@@ -74,25 +74,25 @@
Elliptic Integral of the First Kind (Legendre form)
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint2.svg"></span>
</p>
<p>
Elliptic Integral of the Second Kind (Legendre form)
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint3.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint3.svg"></span>
</p>
<p>
Elliptic Integral of the Third Kind (Legendre form)
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint4.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint4.svg"></span>
</p>
<p>
where
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint5.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint5.svg"></span>
</p>
<div class="note"><table border="0" summary="Note">
<tr>
@@ -168,21 +168,37 @@
Complete Elliptic Integral of the First Kind (Legendre form)
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint6.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint6.svg"></span>
</p>
<p>
Complete Elliptic Integral of the Second Kind (Legendre form)
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint7.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint7.svg"></span>
</p>
<p>
Complete Elliptic Integral of the Third Kind (Legendre form)
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint8.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint8.svg"></span>
</p>
<p>
+ Legendre also defined a forth integral D(&#966;,k) which is a combination of the
+ other three:
+ </p>
+<p>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint_d.svg"></span>
+ </p>
+<p>
+ Like the other Legendre integrals this comes in both complete and incomplete
+ forms.
+ </p>
+<h5>
+<a name="math_toolkit.ellint.ellint_intro.h2"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.ellint_intro.carlson_elliptic_integrals"></a></span><a class="link" href="ellint_intro.html#math_toolkit.ellint.ellint_intro.carlson_elliptic_integrals">Carlson
+ Elliptic Integrals</a>
+ </h5>
+<p>
Carlson [<a class="link" href="ellint_intro.html#ellint_ref_carlson77">Carlson77</a>] [<a class="link" href="ellint_intro.html#ellint_ref_carlson78">Carlson78</a>]
gives an alternative definition of elliptic integral's canonical forms:
</p>
@@ -190,7 +206,7 @@
Carlson's Elliptic Integral of the First Kind
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint9.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint9.svg"></span>
</p>
<p>
where <span class="emphasis"><em>x</em></span>, <span class="emphasis"><em>y</em></span>, <span class="emphasis"><em>z</em></span>
@@ -200,7 +216,7 @@
Carlson's Elliptic Integral of the Second Kind
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint10.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint10.svg"></span>
</p>
<p>
where <span class="emphasis"><em>x</em></span>, <span class="emphasis"><em>y</em></span> are nonnegative, at
@@ -210,7 +226,7 @@
Carlson's Elliptic Integral of the Third Kind
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint11.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint11.svg"></span>
</p>
<p>
where <span class="emphasis"><em>x</em></span>, <span class="emphasis"><em>y</em></span>, <span class="emphasis"><em>z</em></span>
@@ -221,7 +237,7 @@
Carlson's Degenerate Elliptic Integral
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint12.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint12.svg"></span>
</p>
<p>
where <span class="emphasis"><em>x</em></span> is nonnegative and <span class="emphasis"><em>y</em></span> is
@@ -241,8 +257,14 @@
</p>
</td></tr>
</table></div>
+<p>
+ Carlson's Symmetric Integral
+ </p>
+<p>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint27.svg"></span>
+ </p>
<h5>
-<a name="math_toolkit.ellint.ellint_intro.h2"></a>
+<a name="math_toolkit.ellint.ellint_intro.h3"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_intro.duplication_theorem"></a></span><a class="link" href="ellint_intro.html#math_toolkit.ellint.ellint_intro.duplication_theorem">Duplication
Theorem</a>
</h5>
@@ -251,10 +273,10 @@
that
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint13.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint13.svg"></span>
</p>
<h5>
-<a name="math_toolkit.ellint.ellint_intro.h3"></a>
+<a name="math_toolkit.ellint.ellint_intro.h4"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_intro.carlson_s_formulas"></a></span><a class="link" href="ellint_intro.html#math_toolkit.ellint.ellint_intro.carlson_s_formulas">Carlson's
Formulas</a>
</h5>
@@ -262,16 +284,39 @@
The Legendre form and Carlson form of elliptic integrals are related by equations:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint14.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint14.svg"></span>
</p>
<p>
In particular,
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/ellint15.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/ellint15.svg"></span>
</p>
<h5>
-<a name="math_toolkit.ellint.ellint_intro.h4"></a>
+<a name="math_toolkit.ellint.ellint_intro.h5"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.ellint_intro.miscellaneous_elliptic_integrals"></a></span><a class="link" href="ellint_intro.html#math_toolkit.ellint.ellint_intro.miscellaneous_elliptic_integrals">Miscellaneous
+ Elliptic Integrals</a>
+ </h5>
+<p>
+ There are two functions related to the elliptic integrals which otherwise
+ defy categorisation, these are the Jacobi Zeta function:
+ </p>
+<p>
+ <span class="inlinemediaobject"><img src="../../../equations/jacobi_zeta.svg"></span>
+ </p>
+<p>
+ and the Heuman Lambda function:
+ </p>
+<p>
+ <span class="inlinemediaobject"><img src="../../../equations/heuman_lambda.svg"></span>
+ </p>
+<p>
+ Both of these functions are easily implemented in terms of Carlson's integrals,
+ and are provided in this library as <a class="link" href="jacobi_zeta.html" title="Jacobi Zeta Function">jacobi_zeta</a>
+ and <a class="link" href="heuman_lambda.html" title="Heuman Lambda Function">heuman_lambda</a>.
+ </p>
+<h5>
+<a name="math_toolkit.ellint.ellint_intro.h6"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_intro.numerical_algorithms"></a></span><a class="link" href="ellint_intro.html#math_toolkit.ellint.ellint_intro.numerical_algorithms">Numerical
Algorithms</a>
</h5>
@@ -285,7 +330,7 @@
precisions.
</p>
<h5>
-<a name="math_toolkit.ellint.ellint_intro.h5"></a>
+<a name="math_toolkit.ellint.ellint_intro.h7"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_intro.references"></a></span><a class="link" href="ellint_intro.html#math_toolkit.ellint.ellint_intro.references">References</a>
</h5>
<p>
diff --git a/libs/math/doc/html/math_toolkit/ellint/heuman_lambda.html b/libs/math/doc/html/math_toolkit/ellint/heuman_lambda.html
new file mode 100644
index 000000000..96fce53b1
--- /dev/null
+++ b/libs/math/doc/html/math_toolkit/ellint/heuman_lambda.html
@@ -0,0 +1,130 @@
+<html>
+<head>
+<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
+<title>Heuman Lambda Function</title>
+<link rel="stylesheet" href="../../math.css" type="text/css">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
+<link rel="up" href="../ellint.html" title="Elliptic Integrals">
+<link rel="prev" href="jacobi_zeta.html" title="Jacobi Zeta Function">
+<link rel="next" href="../jacobi.html" title="Jacobi Elliptic Functions">
+</head>
+<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
+<table cellpadding="2" width="100%"><tr>
+<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
+<td align="center"><a href="../../../../../../index.html">Home</a></td>
+<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
+<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
+<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
+<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
+</tr></table>
+<hr>
+<div class="spirit-nav">
+<a accesskey="p" href="jacobi_zeta.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../jacobi.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
+</div>
+<div class="section">
+<div class="titlepage"><div><div><h3 class="title">
+<a name="math_toolkit.ellint.heuman_lambda"></a><a class="link" href="heuman_lambda.html" title="Heuman Lambda Function">Heuman Lambda Function</a>
+</h3></div></div></div>
+<h5>
+<a name="math_toolkit.ellint.heuman_lambda.h0"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.heuman_lambda.synopsis"></a></span><a class="link" href="heuman_lambda.html#math_toolkit.ellint.heuman_lambda.synopsis">Synopsis</a>
+ </h5>
+<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">heuman_lambda</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
+</pre>
+<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">heuman_lambda</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">heuman_lambda</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
+
+<span class="special">}}</span> <span class="comment">// namespaces</span>
+</pre>
+<h5>
+<a name="math_toolkit.ellint.heuman_lambda.h1"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.heuman_lambda.description"></a></span><a class="link" href="heuman_lambda.html#math_toolkit.ellint.heuman_lambda.description">Description</a>
+ </h5>
+<p>
+ This function evaluates the Heuman Lambda Function <span class="emphasis"><em>&#923;<sub>0</sub>(&#966;, k)</em></span>
+ </p>
+<p>
+ <span class="inlinemediaobject"><img src="../../../equations/heuman_lambda.svg"></span>
+ </p>
+<p>
+ The return type of this function is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
+ type calculation rules</em></span></a> when the arguments are of different
+ types: when they are the same type then the result is the same type as the
+ arguments.
+ </p>
+<p>
+ Requires <span class="emphasis"><em>-1 &lt;= k &lt;= 1</em></span>, otherwise returns the result
+ of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
+ (outside this range the result would be complex).
+ </p>
+<p>
+ The final <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
+ be used to control the behaviour of the function: how it handles errors,
+ what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">policy
+ documentation for more details</a>.
+ </p>
+<p>
+ Note that there is no complete analogue of this function (where &#966; = &#960; / 2) as
+ this takes the value 1 for all <span class="emphasis"><em>k</em></span>.
+ </p>
+<h5>
+<a name="math_toolkit.ellint.heuman_lambda.h2"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.heuman_lambda.accuracy"></a></span><a class="link" href="heuman_lambda.html#math_toolkit.ellint.heuman_lambda.accuracy">Accuracy</a>
+ </h5>
+<p>
+ These functions are trivially computed in terms of other elliptic integrals
+ and generally have very low error rates (a few epsilon) unless parameter
+ &#966;
+is very large, in which case the usual trigonometric function argument-reduction
+ issues apply.
+ </p>
+<h5>
+<a name="math_toolkit.ellint.heuman_lambda.h3"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.heuman_lambda.testing"></a></span><a class="link" href="heuman_lambda.html#math_toolkit.ellint.heuman_lambda.testing">Testing</a>
+ </h5>
+<p>
+ The tests use a mixture of spot test values calculated using values calculated
+ at wolframalpha.com, and random test data generated using MPFR at 1000-bit
+ precision and a deliberately naive implementation in terms of the Legendre
+ integrals.
+ </p>
+<h5>
+<a name="math_toolkit.ellint.heuman_lambda.h4"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.heuman_lambda.implementation"></a></span><a class="link" href="heuman_lambda.html#math_toolkit.ellint.heuman_lambda.implementation">Implementation</a>
+ </h5>
+<p>
+ The function is then implemented in terms of Carlson's integrals R<sub>J</sub> and R<sub>F</sub>
+using
+ the relation:
+ </p>
+<p>
+ <span class="inlinemediaobject"><img src="../../../equations/heuman_lambda.svg"></span>
+ </p>
+<p>
+ This relation fails for <span class="emphasis"><em>|&#966;| &gt;= &#960;/2</em></span> in which case the
+ definition in terms of the Jacobi Zeta is used.
+ </p>
+</div>
+<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
+<td align="left"></td>
+<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014 Nikhar Agrawal,
+ Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
+ Holin, Bruno Lalande, John Maddock, Johan R&#229;de, Gautam Sewani, Benjamin Sobotta,
+ Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
+ Distributed under the Boost Software License, Version 1.0. (See accompanying
+ file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
+ </p>
+</div></td>
+</tr></table>
+<hr>
+<div class="spirit-nav">
+<a accesskey="p" href="jacobi_zeta.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../jacobi.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
+</div>
+</body>
+</html>
diff --git a/libs/math/doc/html/math_toolkit/ellint/jacobi_zeta.html b/libs/math/doc/html/math_toolkit/ellint/jacobi_zeta.html
new file mode 100644
index 000000000..945ace297
--- /dev/null
+++ b/libs/math/doc/html/math_toolkit/ellint/jacobi_zeta.html
@@ -0,0 +1,139 @@
+<html>
+<head>
+<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
+<title>Jacobi Zeta Function</title>
+<link rel="stylesheet" href="../../math.css" type="text/css">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
+<link rel="up" href="../ellint.html" title="Elliptic Integrals">
+<link rel="prev" href="ellint_d.html" title="Elliptic Integral D - Legendre Form">
+<link rel="next" href="heuman_lambda.html" title="Heuman Lambda Function">
+</head>
+<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
+<table cellpadding="2" width="100%"><tr>
+<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
+<td align="center"><a href="../../../../../../index.html">Home</a></td>
+<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
+<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
+<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
+<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
+</tr></table>
+<hr>
+<div class="spirit-nav">
+<a accesskey="p" href="ellint_d.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="heuman_lambda.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
+</div>
+<div class="section">
+<div class="titlepage"><div><div><h3 class="title">
+<a name="math_toolkit.ellint.jacobi_zeta"></a><a class="link" href="jacobi_zeta.html" title="Jacobi Zeta Function">Jacobi Zeta Function</a>
+</h3></div></div></div>
+<h5>
+<a name="math_toolkit.ellint.jacobi_zeta.h0"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.jacobi_zeta.synopsis"></a></span><a class="link" href="jacobi_zeta.html#math_toolkit.ellint.jacobi_zeta.synopsis">Synopsis</a>
+ </h5>
+<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">jacobi_zeta</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
+</pre>
+<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">jacobi_zeta</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
+
+<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
+<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">jacobi_zeta</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
+
+<span class="special">}}</span> <span class="comment">// namespaces</span>
+</pre>
+<h5>
+<a name="math_toolkit.ellint.jacobi_zeta.h1"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.jacobi_zeta.description"></a></span><a class="link" href="jacobi_zeta.html#math_toolkit.ellint.jacobi_zeta.description">Description</a>
+ </h5>
+<p>
+ This function evaluates the Jacobi Zeta Function <span class="emphasis"><em>Z(&#966;, k)</em></span>
+ </p>
+<p>
+ <span class="inlinemediaobject"><img src="../../../equations/jacobi_zeta.svg"></span>
+ </p>
+<p>
+ The return type of this function is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
+ type calculation rules</em></span></a> when the arguments are of different
+ types: when they are the same type then the result is the same type as the
+ arguments.
+ </p>
+<p>
+ Requires <span class="emphasis"><em>-1 &lt;= k &lt;= 1</em></span>, otherwise returns the result
+ of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
+ (outside this range the result would be complex).
+ </p>
+<p>
+ The final <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
+ be used to control the behaviour of the function: how it handles errors,
+ what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">policy
+ documentation for more details</a>.
+ </p>
+<p>
+ Note that there is no complete analogue of this function (where &#966; = &#960; / 2) as
+ this takes the value 0 for all <span class="emphasis"><em>k</em></span>.
+ </p>
+<h5>
+<a name="math_toolkit.ellint.jacobi_zeta.h2"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.jacobi_zeta.accuracy"></a></span><a class="link" href="jacobi_zeta.html#math_toolkit.ellint.jacobi_zeta.accuracy">Accuracy</a>
+ </h5>
+<p>
+ These functions are trivially computed in terms of other elliptic integrals
+ and generally have very low error rates (a few epsilon) unless parameter
+ &#966;
+is very large, in which case the usual trigonometric function argument-reduction
+ issues apply.
+ </p>
+<h5>
+<a name="math_toolkit.ellint.jacobi_zeta.h3"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.jacobi_zeta.testing"></a></span><a class="link" href="jacobi_zeta.html#math_toolkit.ellint.jacobi_zeta.testing">Testing</a>
+ </h5>
+<p>
+ The tests use a mixture of spot test values calculated using values calculated
+ at wolframalpha.com, and random test data generated using MPFR at 1000-bit
+ precision and a deliberately naive implementation in terms of the Legendre
+ integrals.
+ </p>
+<h5>
+<a name="math_toolkit.ellint.jacobi_zeta.h4"></a>
+ <span class="phrase"><a name="math_toolkit.ellint.jacobi_zeta.implementation"></a></span><a class="link" href="jacobi_zeta.html#math_toolkit.ellint.jacobi_zeta.implementation">Implementation</a>
+ </h5>
+<p>
+ The implementation for Z(&#966;, k) first makes the argument &#966; positive using:
+ </p>
+<p>
+ <span class="emphasis"><em>Z(-&#966;, k) = -Z(&#966;, k)</em></span>
+ </p>
+<p>
+ The function is then implemented in terms of Carlson's integral R<sub>J</sub>
+using the
+ relation:
+ </p>
+<p>
+ <span class="inlinemediaobject"><img src="../../../equations/jacobi_zeta.svg"></span>
+ </p>
+<p>
+ There is one special case where the above relation fails: when <span class="emphasis"><em>k
+ = 1</em></span>, in that case the function simplifies to
+ </p>
+<p>
+ <span class="emphasis"><em>Z(&#966;, 1) = sign(cos(&#966;)) sin(&#966;)</em></span>
+ </p>
+</div>
+<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
+<td align="left"></td>
+<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014 Nikhar Agrawal,
+ Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
+ Holin, Bruno Lalande, John Maddock, Johan R&#229;de, Gautam Sewani, Benjamin Sobotta,
+ Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
+ Distributed under the Boost Software License, Version 1.0. (See accompanying
+ file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
+ </p>
+</div></td>
+</tr></table>
+<hr>
+<div class="spirit-nav">
+<a accesskey="p" href="ellint_d.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="heuman_lambda.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
+</div>
+</body>
+</html>