summaryrefslogtreecommitdiff
path: root/libs/math/doc/html/math_toolkit/inv_hyper
diff options
context:
space:
mode:
authorLorry Tar Creator <lorry-tar-importer@baserock.org>2015-04-08 03:09:47 +0000
committer <>2015-05-05 14:37:32 +0000
commitf2541bb90af059680aa7036f315f052175999355 (patch)
treea5b214744b256f07e1dc2bd7273035a7808c659f /libs/math/doc/html/math_toolkit/inv_hyper
parented232fdd34968697a68783b3195b1da4226915b5 (diff)
downloadboost-tarball-master.tar.gz
Imported from /home/lorry/working-area/delta_boost-tarball/boost_1_58_0.tar.bz2.HEADboost_1_58_0master
Diffstat (limited to 'libs/math/doc/html/math_toolkit/inv_hyper')
-rw-r--r--libs/math/doc/html/math_toolkit/inv_hyper/acosh.html16
-rw-r--r--libs/math/doc/html/math_toolkit/inv_hyper/asinh.html16
-rw-r--r--libs/math/doc/html/math_toolkit/inv_hyper/atanh.html14
-rw-r--r--libs/math/doc/html/math_toolkit/inv_hyper/inv_hyper_over.html18
4 files changed, 32 insertions, 32 deletions
diff --git a/libs/math/doc/html/math_toolkit/inv_hyper/acosh.html b/libs/math/doc/html/math_toolkit/inv_hyper/acosh.html
index 07dd0a0ab..a4838e2f6 100644
--- a/libs/math/doc/html/math_toolkit/inv_hyper/acosh.html
+++ b/libs/math/doc/html/math_toolkit/inv_hyper/acosh.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>acosh</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../inv_hyper.html" title="Inverse Hyperbolic Functions">
<link rel="prev" href="inv_hyper_over.html" title="Inverse Hyperbolic Functions Overview">
<link rel="next" href="asinh.html" title="asinh">
@@ -54,7 +54,7 @@
documentation for more details</a>.
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/acosh.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/acosh.svg" align="middle"></span>
</p>
<h5>
<a name="math_toolkit.inv_hyper.acosh.h0"></a>
@@ -73,7 +73,7 @@
formula:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/acosh1.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/acosh1.svg"></span>
</p>
<p>
along with a selection of sanity check values computed using functions.wolfram.com
@@ -87,27 +87,27 @@
For sufficiently large x, we can use the <a href="http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/06/01/0001/" target="_top">approximation</a>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/acosh2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/acosh2.svg"></span>
</p>
<p>
For x sufficiently close to 1 we can use the <a href="http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/04/01/0001/" target="_top">approximation</a>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/acosh4.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/acosh4.svg"></span>
</p>
<p>
Otherwise for x close to 1 we can use the following rearrangement of the
primary definition to preserve accuracy:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/acosh3.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/acosh3.svg"></span>
</p>
<p>
Otherwise the <a href="http://functions.wolfram.com/ElementaryFunctions/ArcCosh/02/" target="_top">primary
definition</a> is used:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/acosh1.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/acosh1.svg"></span>
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
diff --git a/libs/math/doc/html/math_toolkit/inv_hyper/asinh.html b/libs/math/doc/html/math_toolkit/inv_hyper/asinh.html
index be777c85b..a2e2d035d 100644
--- a/libs/math/doc/html/math_toolkit/inv_hyper/asinh.html
+++ b/libs/math/doc/html/math_toolkit/inv_hyper/asinh.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>asinh</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../inv_hyper.html" title="Inverse Hyperbolic Functions">
<link rel="prev" href="acosh.html" title="acosh">
<link rel="next" href="atanh.html" title="atanh">
@@ -43,7 +43,7 @@
type calculation rules</em></span></a>: the return type is <code class="computeroutput"><span class="keyword">double</span></code> when T is an integer type, and T otherwise.
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/asinh.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/asinh.svg" align="middle"></span>
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
@@ -68,7 +68,7 @@
formula:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/asinh1.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/asinh1.svg"></span>
</p>
<p>
along with a selection of sanity check values computed using functions.wolfram.com
@@ -82,27 +82,27 @@
For sufficiently large x we can use the <a href="http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/06/01/0001/" target="_top">approximation</a>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/asinh2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/asinh2.svg"></span>
</p>
<p>
While for very small x we can use the <a href="http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/03/01/0001/" target="_top">approximation</a>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/asinh3.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/asinh3.svg"></span>
</p>
<p>
For 0.5 &gt; x &gt; &#949; the following rearrangement of the primary definition
is used:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/asinh4.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/asinh4.svg"></span>
</p>
<p>
Otherwise evalution is via the <a href="http://functions.wolfram.com/ElementaryFunctions/ArcSinh/02/" target="_top">primary
definition</a>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/asinh4.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/asinh4.svg"></span>
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
diff --git a/libs/math/doc/html/math_toolkit/inv_hyper/atanh.html b/libs/math/doc/html/math_toolkit/inv_hyper/atanh.html
index 46bc5fe5b..c1532d7c6 100644
--- a/libs/math/doc/html/math_toolkit/inv_hyper/atanh.html
+++ b/libs/math/doc/html/math_toolkit/inv_hyper/atanh.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>atanh</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../inv_hyper.html" title="Inverse Hyperbolic Functions">
<link rel="prev" href="asinh.html" title="asinh">
<link rel="next" href="../owens_t.html" title="Owen's T function">
@@ -63,7 +63,7 @@ denoting numeric_limits&lt;T&gt;::epsilon().
type calculation rules</em></span></a>: the return type is <code class="computeroutput"><span class="keyword">double</span></code> when T is an integer type, and T otherwise.
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/atanh.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/atanh.svg" align="middle"></span>
</p>
<h5>
<a name="math_toolkit.inv_hyper.atanh.h0"></a>
@@ -82,7 +82,7 @@ denoting numeric_limits&lt;T&gt;::epsilon().
formula:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/atanh1.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/atanh1.svg"></span>
</p>
<p>
along with a selection of sanity check values computed using functions.wolfram.com
@@ -96,20 +96,20 @@ denoting numeric_limits&lt;T&gt;::epsilon().
For sufficiently small x we can use the <a href="http://functions.wolfram.com/ElementaryFunctions/ArcTanh/06/01/03/01/" target="_top">approximation</a>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/atanh2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/atanh2.svg"></span>
</p>
<p>
Otherwise the <a href="http://functions.wolfram.com/ElementaryFunctions/ArcTanh/02/" target="_top">primary
definition</a>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/atanh1.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/atanh1.svg"></span>
</p>
<p>
or its equivalent form:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/atanh3.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/atanh3.svg"></span>
</p>
<p>
is used.
diff --git a/libs/math/doc/html/math_toolkit/inv_hyper/inv_hyper_over.html b/libs/math/doc/html/math_toolkit/inv_hyper/inv_hyper_over.html
index cac9b7594..725cf2167 100644
--- a/libs/math/doc/html/math_toolkit/inv_hyper/inv_hyper_over.html
+++ b/libs/math/doc/html/math_toolkit/inv_hyper/inv_hyper_over.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Inverse Hyperbolic Functions Overview</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../inv_hyper.html" title="Inverse Hyperbolic Functions">
<link rel="prev" href="../inv_hyper.html" title="Inverse Hyperbolic Functions">
<link rel="next" href="acosh.html" title="acosh">
@@ -29,7 +29,7 @@
</h3></div></div></div>
<p>
The exponential funtion is defined, for all objects for which this makes
- sense, as the power series <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb1.png"></span>,
+ sense, as the power series <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb1.svg"></span>,
with <span class="emphasis"><em><code class="literal">n! = 1x2x3x4x5...xn</code></em></span> (and <span class="emphasis"><em><code class="literal">0!
= 1</code></em></span> by definition) being the factorial of <span class="emphasis"><em><code class="literal">n</code></em></span>.
In particular, the exponential function is well defined for real numbers,
@@ -53,13 +53,13 @@
(for reals, complex, quaternions and octonions) as:
</p>
<p>
- Hyperbolic cosine: <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb5.png"></span>
+ Hyperbolic cosine: <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb5.svg"></span>
</p>
<p>
- Hyperbolic sine: <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb6.png"></span>
+ Hyperbolic sine: <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb6.svg"></span>
</p>
<p>
- Hyperbolic tangent: <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb7.png"></span>
+ Hyperbolic tangent: <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb7.svg"></span>
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="emphasis"><em><span class="bold"><strong>Trigonometric functions on R (cos: purple;
@@ -86,15 +86,15 @@
</p>
<p>
The inverse of the hyperbolic tangent is called the Argument hyperbolic tangent,
- and can be computed as <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb15.png"></span>.
+ and can be computed as <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb15.svg"></span>.
</p>
<p>
The inverse of the hyperbolic sine is called the Argument hyperbolic sine,
- and can be computed (for <code class="literal">[-1;-1+&#949;[</code>) as <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb17.png"></span>.
+ and can be computed (for <code class="literal">[-1;-1+&#949;[</code>) as <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb17.svg"></span>.
</p>
<p>
The inverse of the hyperbolic cosine is called the Argument hyperbolic cosine,
- and can be computed as <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb18.png"></span>.
+ and can be computed as <span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb18.svg"></span>.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>