summaryrefslogtreecommitdiff
path: root/libs/math/doc/html/math_toolkit/bessel
diff options
context:
space:
mode:
Diffstat (limited to 'libs/math/doc/html/math_toolkit/bessel')
-rw-r--r--libs/math/doc/html/math_toolkit/bessel/bessel_derivatives.html10
-rw-r--r--libs/math/doc/html/math_toolkit/bessel/bessel_first.html42
-rw-r--r--libs/math/doc/html/math_toolkit/bessel/bessel_over.html48
-rw-r--r--libs/math/doc/html/math_toolkit/bessel/bessel_root.html8
-rw-r--r--libs/math/doc/html/math_toolkit/bessel/mbessel.html34
-rw-r--r--libs/math/doc/html/math_toolkit/bessel/sph_bessel.html14
6 files changed, 78 insertions, 78 deletions
diff --git a/libs/math/doc/html/math_toolkit/bessel/bessel_derivatives.html b/libs/math/doc/html/math_toolkit/bessel/bessel_derivatives.html
index 16f0bdac4..3515bf781 100644
--- a/libs/math/doc/html/math_toolkit/bessel/bessel_derivatives.html
+++ b/libs/math/doc/html/math_toolkit/bessel/bessel_derivatives.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Derivatives of the Bessel Functions</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../bessel.html" title="Bessel Functions">
<link rel="prev" href="sph_bessel.html" title="Spherical Bessel Functions of the First and Second Kinds">
<link rel="next" href="../hankel.html" title="Hankel Functions">
@@ -119,19 +119,19 @@
In the general case, the derivatives are calculated using the relations:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel_derivatives1.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel_derivatives1.svg"></span>
</p>
<p>
There are also a number of special cases, for large x we have:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel_derivatives4.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel_derivatives4.svg"></span>
</p>
<p>
And for small x:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel_derivatives5.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel_derivatives5.svg"></span>
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
diff --git a/libs/math/doc/html/math_toolkit/bessel/bessel_first.html b/libs/math/doc/html/math_toolkit/bessel/bessel_first.html
index 1d99d2199..31ad8bae6 100644
--- a/libs/math/doc/html/math_toolkit/bessel/bessel_first.html
+++ b/libs/math/doc/html/math_toolkit/bessel/bessel_first.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Bessel Functions of the First and Second Kinds</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../bessel.html" title="Bessel Functions">
<link rel="prev" href="bessel_over.html" title="Bessel Function Overview">
<link rel="next" href="bessel_root.html" title="Finding Zeros of Bessel Functions of the First and Second Kinds">
@@ -65,10 +65,10 @@
where:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel2.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel3.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel3.svg"></span>
</p>
<p>
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
@@ -98,14 +98,14 @@
The following graph illustrates the cyclic nature of J<sub>v</sub>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/cyl_bessel_j.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/cyl_bessel_j.svg" align="middle"></span>
</p>
<p>
The following graph shows the behaviour of Y<sub>v</sub>: this is also cyclic for large
<span class="emphasis"><em>x</em></span>, but tends to -&#8734; &#160; for small <span class="emphasis"><em>x</em></span>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/cyl_neumann.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/cyl_neumann.svg" align="middle"></span>
</p>
<h5>
<a name="math_toolkit.bessel.bessel_first.h2"></a>
@@ -509,10 +509,10 @@
can be used to move to <span class="emphasis"><em>v &gt; 0</em></span>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel9.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel9.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel10.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel10.svg"></span>
</p>
<p>
Note that if the order is an integer, then these formulae reduce to:
@@ -566,16 +566,16 @@
and <a href="http://functions.wolfram.com/03.03.06.0040.01" target="_top">http://functions.wolfram.com/03.03.06.0040.01</a>):
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel_y0_small_z.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel_y0_small_z.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel_y1_small_z.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel_y1_small_z.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel_y2_small_z.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel_y2_small_z.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel_yn_small_z.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel_yn_small_z.svg"></span>
</p>
<p>
When <span class="emphasis"><em>x</em></span> is small compared to <span class="emphasis"><em>v</em></span> and
@@ -584,14 +584,14 @@
often too slow to converge to be used (see <a href="http://functions.wolfram.com/03.03.06.0034.01" target="_top">http://functions.wolfram.com/03.03.06.0034.01</a>):
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel_yv_small_z.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel_yv_small_z.svg"></span>
</p>
<p>
When <span class="emphasis"><em>x</em></span> is small compared to <span class="emphasis"><em>v</em></span>,
J<sub>v</sub>x &#160; is best computed directly from the series:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel2.svg"></span>
</p>
<p>
In the general case we compute J<sub>v</sub> &#160; and Y<sub>v</sub> &#160; simultaneously.
@@ -606,13 +606,13 @@
as well as the Wronskian:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel8.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel8.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel11.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel11.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel12.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel12.svg"></span>
</p>
<p>
See: F.S. Acton, <span class="emphasis"><em>Numerical Methods that Work</em></span>, The Mathematical
@@ -639,13 +639,13 @@
J<sub>&#956;</sub>, J<sub>&#956;+1</sub>, Y<sub>&#956;</sub>, Y<sub>&#956;+1</sub> can be calculated by
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel13.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel13.svg"></span>
</p>
<p>
where
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel14.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel14.svg"></span>
</p>
<p>
J<sub>&#957;</sub> and Y<sub>&#956;</sub> are then calculated using backward (Miller's algorithm) and forward
@@ -657,13 +657,13 @@
series:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel15.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel15.svg"></span>
</p>
<p>
where
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel16.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel16.svg"></span>
</p>
<p>
g<sub>k</sub> &#160; and h<sub>k</sub> &#160;
diff --git a/libs/math/doc/html/math_toolkit/bessel/bessel_over.html b/libs/math/doc/html/math_toolkit/bessel/bessel_over.html
index 8896253ff..a85b80769 100644
--- a/libs/math/doc/html/math_toolkit/bessel/bessel_over.html
+++ b/libs/math/doc/html/math_toolkit/bessel/bessel_over.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Bessel Function Overview</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../bessel.html" title="Bessel Functions">
<link rel="prev" href="../bessel.html" title="Bessel Functions">
<link rel="next" href="bessel_first.html" title="Bessel Functions of the First and Second Kinds">
@@ -35,7 +35,7 @@
Bessel Functions are solutions to Bessel's ordinary differential equation:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel1.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel1.svg"></span>
</p>
<p>
where &#957; &#160; is the <span class="emphasis"><em>order</em></span> of the equation, and may be an arbitrary
@@ -51,7 +51,7 @@ and known as a Bessel
function of the first kind:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel2.svg"></span>
</p>
<p>
This function is implemented in this library as <a class="link" href="bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_bessel_j</a>.
@@ -62,7 +62,7 @@ and is known as either a Bessel
Function of the second kind, or as a Neumann function:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel3.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel3.svg"></span>
</p>
<p>
This function is implemented in this library as <a class="link" href="bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_neumann</a>.
@@ -71,34 +71,34 @@ and is known as either a Bessel
The Bessel functions satisfy the recurrence relations:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel4.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel4.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel5.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel5.svg"></span>
</p>
<p>
Have the derivatives:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel6.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel6.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel7.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel7.svg"></span>
</p>
<p>
Have the Wronskian relation:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel8.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel8.svg"></span>
</p>
<p>
and the reflection formulae:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel9.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel9.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/bessel10.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/bessel10.svg"></span>
</p>
<h5>
<a name="math_toolkit.bessel.bessel_over.h1"></a>
@@ -112,7 +112,7 @@ and is known as either a Bessel
are the two linearly independent solutions to the modified Bessel equation:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel1.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel1.svg"></span>
</p>
<p>
The solutions are known as the modified Bessel functions of the first and
@@ -121,10 +121,10 @@ and is known as either a Bessel
respectively:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel2.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel3.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel3.svg"></span>
</p>
<p>
These functions are implemented in this library as <a class="link" href="mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">cyl_bessel_i</a>
@@ -134,34 +134,34 @@ respectively:
The modified Bessel functions satisfy the recurrence relations:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel4.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel4.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel5.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel5.svg"></span>
</p>
<p>
Have the derivatives:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel6.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel6.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel7.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel7.svg"></span>
</p>
<p>
Have the Wronskian relation:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel8.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel8.svg"></span>
</p>
<p>
and the reflection formulae:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel9.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel9.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel10.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel10.svg"></span>
</p>
<h5>
<a name="math_toolkit.bessel.bessel_over.h2"></a>
@@ -173,7 +173,7 @@ respectively:
of variables, the radial equation has the form:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/sbessel1.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/sbessel1.svg"></span>
</p>
<p>
The two linearly independent solutions to this equation are called the spherical
@@ -181,7 +181,7 @@ respectively:
J<sub>n</sub> &#160; and Y<sub>n</sub> &#160; by:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/sbessel2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/sbessel2.svg"></span>
</p>
<p>
The spherical Bessel function of the second kind y<sub>n</sub> &#160;
diff --git a/libs/math/doc/html/math_toolkit/bessel/bessel_root.html b/libs/math/doc/html/math_toolkit/bessel/bessel_root.html
index 63ac4464a..45babf62f 100644
--- a/libs/math/doc/html/math_toolkit/bessel/bessel_root.html
+++ b/libs/math/doc/html/math_toolkit/bessel/bessel_root.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Finding Zeros of Bessel Functions of the First and Second Kinds</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../bessel.html" title="Bessel Functions">
<link rel="prev" href="bessel_first.html" title="Bessel Functions of the First and Second Kinds">
<link rel="next" href="mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">
@@ -159,10 +159,10 @@
nor NaN.
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/bessel_j_zeros.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/bessel_j_zeros.svg" align="middle"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/neumann_y_zeros.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/neumann_y_zeros.svg" align="middle"></span>
</p>
<h5>
<a name="math_toolkit.bessel.bessel_root.h2"></a>
diff --git a/libs/math/doc/html/math_toolkit/bessel/mbessel.html b/libs/math/doc/html/math_toolkit/bessel/mbessel.html
index ad62070e8..23c042376 100644
--- a/libs/math/doc/html/math_toolkit/bessel/mbessel.html
+++ b/libs/math/doc/html/math_toolkit/bessel/mbessel.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Modified Bessel Functions of the First and Second Kinds</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../bessel.html" title="Bessel Functions">
<link rel="prev" href="bessel_root.html" title="Finding Zeros of Bessel Functions of the First and Second Kinds">
<link rel="next" href="sph_bessel.html" title="Spherical Bessel Functions of the First and Second Kinds">
@@ -66,10 +66,10 @@
where:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel2.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel3.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel3.svg"></span>
</p>
<p>
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
@@ -99,13 +99,13 @@
The following graph illustrates the exponential behaviour of I<sub>v</sub>.
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/cyl_bessel_i.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/cyl_bessel_i.svg" align="middle"></span>
</p>
<p>
The following graph illustrates the exponential decay of K<sub>v</sub>.
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/cyl_bessel_k.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/cyl_bessel_k.svg" align="middle"></span>
</p>
<h5>
<a name="math_toolkit.bessel.mbessel.h2"></a>
@@ -365,7 +365,7 @@
the recurrence relation:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel5.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel5.svg"></span>
</p>
<p>
starting from K<sub>0</sub> &#160; and K<sub>1</sub> &#160; which are calculated using rational the approximations
@@ -377,17 +377,17 @@
I<sub>v</sub>x &#160; is best computed directly from the series:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel17.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel17.svg"></span>
</p>
<p>
In the general case, we first normalize &#957; &#160; to [<code class="literal">0, [inf]</code>)
with the help of the reflection formulae:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel9.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel9.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel10.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel10.svg"></span>
</p>
<p>
Let &#956; &#160; = &#957; - floor(&#957; + 1/2), then &#956; &#160; is the fractional part of &#957; &#160; such that |&#956;| &lt;= 1/2
@@ -401,13 +401,13 @@
fractions as well as the Wronskian:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel11.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel11.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel12.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel12.svg"></span>
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel8.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel8.svg"></span>
</p>
<p>
The continued fractions are computed using the modified Lentz's method (W.J.
@@ -431,13 +431,13 @@
can be calculated by
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel13.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel13.svg"></span>
</p>
<p>
where
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel14.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel14.svg"></span>
</p>
<p>
<span class="emphasis"><em>S</em></span> is also a series that is summed along with CF2, see
@@ -451,13 +451,13 @@ can be calculated by
series:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel15.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel15.svg"></span>
</p>
<p>
where
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/mbessel16.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/mbessel16.svg"></span>
</p>
<p>
f<sub>k</sub> &#160; and h<sub>k</sub> &#160;
diff --git a/libs/math/doc/html/math_toolkit/bessel/sph_bessel.html b/libs/math/doc/html/math_toolkit/bessel/sph_bessel.html
index 482154504..9d36025a2 100644
--- a/libs/math/doc/html/math_toolkit/bessel/sph_bessel.html
+++ b/libs/math/doc/html/math_toolkit/bessel/sph_bessel.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Spherical Bessel Functions of the First and Second Kinds</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../bessel.html" title="Bessel Functions">
<link rel="prev" href="mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">
<link rel="next" href="bessel_derivatives.html" title="Derivatives of the Bessel Functions">
@@ -66,7 +66,7 @@
where:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/sbessel2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/sbessel2.svg"></span>
</p>
<p>
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
@@ -86,14 +86,14 @@
The j<sub>v</sub> &#160; function is cyclic like J<sub>v</sub> &#160; but differs in its behaviour at the origin:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/sph_bessel.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/sph_bessel.svg" align="middle"></span>
</p>
<p>
Likewise y<sub>v</sub> &#160; is also cyclic for large x, but tends to -&#8734; &#160;
for small <span class="emphasis"><em>x</em></span>:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../graphs/sph_neumann.png" align="middle"></span>
+ <span class="inlinemediaobject"><img src="../../../graphs/sph_neumann.svg" align="middle"></span>
</p>
<h5>
<a name="math_toolkit.bessel.sph_bessel.h2"></a>
@@ -123,7 +123,7 @@ for small <span class="emphasis"><em>x</em></span>:
implemented directly in terms of their definitions:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/sbessel2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/sbessel2.svg"></span>
</p>
<p>
The special cases occur for:
@@ -136,7 +136,7 @@ for small <span class="emphasis"><em>x</em></span>:
and for small <span class="emphasis"><em>x &lt; 1</em></span>, we can use the series:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/sbessel5.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/sbessel5.svg"></span>
</p>
<p>
which neatly avoids the problem of calculating 0/0 that can occur with the