summaryrefslogtreecommitdiff
path: root/libs/math/doc/html/math_toolkit/internals1/roots.html
diff options
context:
space:
mode:
Diffstat (limited to 'libs/math/doc/html/math_toolkit/internals1/roots.html')
-rw-r--r--libs/math/doc/html/math_toolkit/internals1/roots.html12
1 files changed, 6 insertions, 6 deletions
diff --git a/libs/math/doc/html/math_toolkit/internals1/roots.html b/libs/math/doc/html/math_toolkit/internals1/roots.html
index a3c66cae3..00efbc180 100644
--- a/libs/math/doc/html/math_toolkit/internals1/roots.html
+++ b/libs/math/doc/html/math_toolkit/internals1/roots.html
@@ -3,8 +3,8 @@
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Root Finding With Derivatives: Newton-Raphson, Halley &amp; Schroeder</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
-<link rel="home" href="../../index.html" title="Math Toolkit 2.1.0">
+<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
+<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../internals1.html" title="Utilities &amp; internals">
<link rel="prev" href="rational.html" title="Polynomial and Rational Function Evaluation">
<link rel="next" href="roots2.html" title="Root Finding Without Derivatives: Bisection, Bracket and TOMS748">
@@ -211,7 +211,7 @@
Given an initial guess x0 the subsequent values are computed using:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/roots1.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/roots1.svg"></span>
</p>
<p>
Out of bounds steps revert to bisection of the current bounds.
@@ -228,7 +228,7 @@
Given an initial guess x0 the subsequent values are computed using:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/roots2.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/roots2.svg"></span>
</p>
<p>
Over-compensation by the second derivative (one which would proceed in the
@@ -249,7 +249,7 @@
Given an initial guess x0 the subsequent values are computed using:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/roots3.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/roots3.svg"></span>
</p>
<p>
Over-compensation by the second derivative (one which would proceed in the
@@ -272,7 +272,7 @@
want to solve along with its derivatives are:
</p>
<p>
- <span class="inlinemediaobject"><img src="../../../equations/roots4.png"></span>
+ <span class="inlinemediaobject"><img src="../../../equations/roots4.svg"></span>
</p>
<p>
To begin with lets solve the problem using Newton-Raphson iterations, we'll