diff options
Diffstat (limited to 'libs/math/test/test_jacobi_zeta.hpp')
-rw-r--r-- | libs/math/test/test_jacobi_zeta.hpp | 90 |
1 files changed, 90 insertions, 0 deletions
diff --git a/libs/math/test/test_jacobi_zeta.hpp b/libs/math/test/test_jacobi_zeta.hpp new file mode 100644 index 000000000..67799c015 --- /dev/null +++ b/libs/math/test/test_jacobi_zeta.hpp @@ -0,0 +1,90 @@ +// Copyright John Maddock 2015. +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + +#ifdef _MSC_VER +# pragma warning(disable : 4756) // overflow in constant arithmetic +// Constants are too big for float case, but this doesn't matter for test. +#endif + +#include <boost/math/concepts/real_concept.hpp> +#define BOOST_TEST_MAIN +#include <boost/test/unit_test.hpp> +#include <boost/test/floating_point_comparison.hpp> +#include <boost/math/special_functions/math_fwd.hpp> +#include <boost/math/constants/constants.hpp> +//#include <boost/math/special_functions/next.hpp> +#include <boost/array.hpp> +#include "functor.hpp" + +#include "handle_test_result.hpp" +#include "table_type.hpp" + +#ifndef SC_ +#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L)) +#endif + +template <class Real, typename T> +void do_test_jacobi_zeta(const T& data, const char* type_name, const char* test) +{ + typedef Real value_type; + + std::cout << "Testing: " << test << std::endl; + +#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) + value_type (*fp2)(value_type, value_type) = boost::math::ellint_d<value_type, value_type>; +#else + value_type(*fp2)(value_type, value_type) = boost::math::jacobi_zeta; +#endif + boost::math::tools::test_result<value_type> result; + + result = boost::math::tools::test_hetero<Real>( + data, + bind_func<Real>(fp2, 1, 0), + extract_result<Real>(2)); + handle_test_result(result, data[result.worst()], result.worst(), + type_name, "boost::math::jacobi_zeta", test); + + std::cout << std::endl; +} + +template <typename T> +void test_spots(T, const char* type_name) +{ + BOOST_MATH_STD_USING + // Function values calculated on http://functions.wolfram.com/ + // Note that Mathematica's EllipticE accepts k^2 as the second parameter. + static const boost::array<boost::array<T, 3>, 18> data1 = {{ + { { SC_(0.5), SC_(0.5), SC_(0.055317014255129651475392155709691519) } }, + { { SC_(-0.5), SC_(0.5), SC_(-0.055317014255129651475392155709691519) } }, + { { SC_(0), SC_(0.5), SC_(0) } }, + { { SC_(1), T(0.5), SC_(0.061847782565098669252626761181452815) } }, +// { { boost::math::float_prior(boost::math::constants::half_pi<T>()), T(0.5), SC_(0) } }, + { { SC_(1), T(0), SC_(0) } }, + { { SC_(1), T(1), SC_(0.84147098480789650665250232163029900) } }, + { { SC_(2), T(0.5), SC_(-0.051942537457672732722176231281435254) } }, + { { SC_(5), T(0.5), SC_(-0.037609329968145259476447488930872898) } }, + { { SC_(0.5), SC_(1), SC_(0.479425538604203000273287935215571388081803367940600675188616) } }, + { { boost::math::constants::half_pi<T>() - static_cast<T>(1) / 1024, SC_(1), SC_(0.999999523162879692486369202949889069215510235208243466564977) } }, + { { boost::math::constants::half_pi<T>() + static_cast<T>(1) / 1024, SC_(1), SC_(-0.999999523162879692486369202949889069215510235208243466564977) } }, + { { SC_(2), SC_(1), SC_(-0.90929742682568169539601986591174484270225497144789026837897) } }, + { { SC_(3), SC_(1), SC_(-0.14112000805986722210074480280811027984693326425226558415188) } }, + { { SC_(4), SC_(1), SC_(0.756802495307928251372639094511829094135912887336472571485416) } }, + { { SC_(-0.5), SC_(1), SC_(-0.479425538604203000273287935215571388081803367940600675188616) } }, + { { SC_(-2), SC_(1), SC_(0.90929742682568169539601986591174484270225497144789026837897) } }, + { { SC_(-3), SC_(1), SC_(0.14112000805986722210074480280811027984693326425226558415188) } }, + { { SC_(-4), SC_(1), SC_(-0.756802495307928251372639094511829094135912887336472571485416) } }, + }}; + + do_test_jacobi_zeta<T>(data1, type_name, "Elliptic Integral Jacobi Zeta: Mathworld Data"); + +#include "jacobi_zeta_data.ipp" + + do_test_jacobi_zeta<T>(jacobi_zeta_data, type_name, "Elliptic Integral Jacobi Zeta: Random Data"); + +#include "jacobi_zeta_big_phi.ipp" + + do_test_jacobi_zeta<T>(jacobi_zeta_big_phi, type_name, "Elliptic Integral Jacobi Zeta: Large Phi Values"); +} + |