diff options
Diffstat (limited to 'libs/math/tools')
-rw-r--r-- | libs/math/tools/carlson_ellint_data.cpp | 489 | ||||
-rw-r--r-- | libs/math/tools/doc/cstdfloat.qbk | 249 | ||||
-rw-r--r-- | libs/math/tools/ellint_d2_data.cpp | 64 | ||||
-rw-r--r-- | libs/math/tools/ellint_d_data.cpp | 62 | ||||
-rw-r--r-- | libs/math/tools/heuman_lambda_data.cpp | 67 | ||||
-rw-r--r-- | libs/math/tools/jacobi_zeta_data.cpp | 64 | ||||
-rw-r--r-- | libs/math/tools/trig_data.cpp | 83 |
7 files changed, 1075 insertions, 3 deletions
diff --git a/libs/math/tools/carlson_ellint_data.cpp b/libs/math/tools/carlson_ellint_data.cpp index c234b4b17..5bd980733 100644 --- a/libs/math/tools/carlson_ellint_data.cpp +++ b/libs/math/tools/carlson_ellint_data.cpp @@ -6,7 +6,8 @@ #include <boost/math/tools/test_data.hpp> #include <boost/test/included/prg_exec_monitor.hpp> -#include <boost/math/special_functions/ellint_3.hpp> +#include <boost/math/special_functions/ellint_rj.hpp> +#include <boost/math/special_functions/ellint_rd.hpp> #include <fstream> #include <boost/math/tools/test_data.hpp> #include <boost/random.hpp> @@ -20,6 +21,377 @@ float truncate_to_float(float const * pf) return *pf; } +// +// Archived here is the original implementation of this +// function by Xiaogang Zhang, we can use this to +// generate special test cases for the new version: +// +template <typename T, typename Policy> +T ellint_rj_old(T x, T y, T z, T p, const Policy& pol) +{ + T value, u, lambda, alpha, beta, sigma, factor, tolerance; + T X, Y, Z, P, EA, EB, EC, E2, E3, S1, S2, S3; + unsigned long k; + + BOOST_MATH_STD_USING + using namespace boost::math; + + static const char* function = "boost::math::ellint_rj<%1%>(%1%,%1%,%1%)"; + + if(x < 0) + { + return policies::raise_domain_error<T>(function, + "Argument x must be non-negative, but got x = %1%", x, pol); + } + if(y < 0) + { + return policies::raise_domain_error<T>(function, + "Argument y must be non-negative, but got y = %1%", y, pol); + } + if(z < 0) + { + return policies::raise_domain_error<T>(function, + "Argument z must be non-negative, but got z = %1%", z, pol); + } + if(p == 0) + { + return policies::raise_domain_error<T>(function, + "Argument p must not be zero, but got p = %1%", p, pol); + } + if(x + y == 0 || y + z == 0 || z + x == 0) + { + return policies::raise_domain_error<T>(function, + "At most one argument can be zero, " + "only possible result is %1%.", std::numeric_limits<T>::quiet_NaN(), pol); + } + + // error scales as the 6th power of tolerance + tolerance = pow(T(1) * tools::epsilon<T>() / 3, T(1) / 6); + + // for p < 0, the integral is singular, return Cauchy principal value + if(p < 0) + { + // + // We must ensure that (z - y) * (y - x) is positive. + // Since the integral is symmetrical in x, y and z + // we can just permute the values: + // + if(x > y) + std::swap(x, y); + if(y > z) + std::swap(y, z); + if(x > y) + std::swap(x, y); + + T q = -p; + T pmy = (z - y) * (y - x) / (y + q); // p - y + + BOOST_ASSERT(pmy >= 0); + + p = pmy + y; + value = ellint_rj_old(x, y, z, p, pol); + value *= pmy; + value -= 3 * boost::math::ellint_rf(x, y, z, pol); + value += 3 * sqrt((x * y * z) / (x * z + p * q)) * boost::math::ellint_rc(x * z + p * q, p * q, pol); + value /= (y + q); + return value; + } + + // duplication + sigma = 0; + factor = 1; + k = 1; + do + { + u = (x + y + z + p + p) / 5; + X = (u - x) / u; + Y = (u - y) / u; + Z = (u - z) / u; + P = (u - p) / u; + + if((tools::max)(abs(X), abs(Y), abs(Z), abs(P)) < tolerance) + break; + + T sx = sqrt(x); + T sy = sqrt(y); + T sz = sqrt(z); + + lambda = sy * (sx + sz) + sz * sx; + alpha = p * (sx + sy + sz) + sx * sy * sz; + alpha *= alpha; + beta = p * (p + lambda) * (p + lambda); + sigma += factor * boost::math::ellint_rc(alpha, beta, pol); + factor /= 4; + x = (x + lambda) / 4; + y = (y + lambda) / 4; + z = (z + lambda) / 4; + p = (p + lambda) / 4; + ++k; + } while(k < policies::get_max_series_iterations<Policy>()); + + // Check to see if we gave up too soon: + policies::check_series_iterations<T>(function, k, pol); + + // Taylor series expansion to the 5th order + EA = X * Y + Y * Z + Z * X; + EB = X * Y * Z; + EC = P * P; + E2 = EA - 3 * EC; + E3 = EB + 2 * P * (EA - EC); + S1 = 1 + E2 * (E2 * T(9) / 88 - E3 * T(9) / 52 - T(3) / 14); + S2 = EB * (T(1) / 6 + P * (T(-6) / 22 + P * T(3) / 26)); + S3 = P * ((EA - EC) / 3 - P * EA * T(3) / 22); + value = 3 * sigma + factor * (S1 + S2 + S3) / (u * sqrt(u)); + + return value; +} + +template <typename T, typename Policy> +T ellint_rd_imp_old(T x, T y, T z, const Policy& pol) +{ + T value, u, lambda, sigma, factor, tolerance; + T X, Y, Z, EA, EB, EC, ED, EE, S1, S2; + unsigned long k; + + BOOST_MATH_STD_USING + using namespace boost::math; + + static const char* function = "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)"; + + if(x < 0) + { + return policies::raise_domain_error<T>(function, + "Argument x must be >= 0, but got %1%", x, pol); + } + if(y < 0) + { + return policies::raise_domain_error<T>(function, + "Argument y must be >= 0, but got %1%", y, pol); + } + if(z <= 0) + { + return policies::raise_domain_error<T>(function, + "Argument z must be > 0, but got %1%", z, pol); + } + if(x + y == 0) + { + return policies::raise_domain_error<T>(function, + "At most one argument can be zero, but got, x + y = %1%", x + y, pol); + } + + // error scales as the 6th power of tolerance + tolerance = pow(tools::epsilon<T>() / 3, T(1) / 6); + + // duplication + sigma = 0; + factor = 1; + k = 1; + do + { + u = (x + y + z + z + z) / 5; + X = (u - x) / u; + Y = (u - y) / u; + Z = (u - z) / u; + if((tools::max)(abs(X), abs(Y), abs(Z)) < tolerance) + break; + T sx = sqrt(x); + T sy = sqrt(y); + T sz = sqrt(z); + lambda = sy * (sx + sz) + sz * sx; //sqrt(x * y) + sqrt(y * z) + sqrt(z * x); + sigma += factor / (sz * (z + lambda)); + factor /= 4; + x = (x + lambda) / 4; + y = (y + lambda) / 4; + z = (z + lambda) / 4; + ++k; + } while(k < policies::get_max_series_iterations<Policy>()); + + // Check to see if we gave up too soon: + policies::check_series_iterations<T>(function, k, pol); + + // Taylor series expansion to the 5th order + EA = X * Y; + EB = Z * Z; + EC = EA - EB; + ED = EA - 6 * EB; + EE = ED + EC + EC; + S1 = ED * (ED * T(9) / 88 - Z * EE * T(9) / 52 - T(3) / 14); + S2 = Z * (EE / 6 + Z * (-EC * T(9) / 22 + Z * EA * T(3) / 26)); + value = 3 * sigma + factor * (1 + S1 + S2) / (u * sqrt(u)); + + return value; +} + +template <typename T, typename Policy> +T ellint_rf_imp_old(T x, T y, T z, const Policy& pol) +{ + T value, X, Y, Z, E2, E3, u, lambda, tolerance; + unsigned long k; + BOOST_MATH_STD_USING + using namespace boost::math; + static const char* function = "boost::math::ellint_rf<%1%>(%1%,%1%,%1%)"; + if(x < 0 || y < 0 || z < 0) + { + return policies::raise_domain_error<T>(function, + "domain error, all arguments must be non-negative, " + "only sensible result is %1%.", + std::numeric_limits<T>::quiet_NaN(), pol); + } + if(x + y == 0 || y + z == 0 || z + x == 0) + { + return policies::raise_domain_error<T>(function, + "domain error, at most one argument can be zero, " + "only sensible result is %1%.", + std::numeric_limits<T>::quiet_NaN(), pol); + } + // Carlson scales error as the 6th power of tolerance, + // but this seems not to work for types larger than + // 80-bit reals, this heuristic seems to work OK: + if(policies::digits<T, Policy>() > 64) + { + tolerance = pow(tools::epsilon<T>(), T(1) / 4.25f); + BOOST_MATH_INSTRUMENT_VARIABLE(tolerance); + } + else + { + tolerance = pow(4 * tools::epsilon<T>(), T(1) / 6); + BOOST_MATH_INSTRUMENT_VARIABLE(tolerance); + } + // duplication + k = 1; + do + { + u = (x + y + z) / 3; + X = (u - x) / u; + Y = (u - y) / u; + Z = (u - z) / u; + // Termination condition: + if((tools::max)(abs(X), abs(Y), abs(Z)) < tolerance) + break; + T sx = sqrt(x); + T sy = sqrt(y); + T sz = sqrt(z); + lambda = sy * (sx + sz) + sz * sx; + x = (x + lambda) / 4; + y = (y + lambda) / 4; + z = (z + lambda) / 4; + ++k; + } while(k < policies::get_max_series_iterations<Policy>()); + // Check to see if we gave up too soon: + policies::check_series_iterations<T>(function, k, pol); + BOOST_MATH_INSTRUMENT_VARIABLE(k); + // Taylor series expansion to the 5th order + E2 = X * Y - Z * Z; + E3 = X * Y * Z; + value = (1 + E2*(E2 / 24 - E3*T(3) / 44 - T(0.1)) + E3 / 14) / sqrt(u); + BOOST_MATH_INSTRUMENT_VARIABLE(value); + return value; +} + + + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rj_data_4e(mp_t n) +{ + mp_t result = ellint_rj_old(n, n, n, n, boost::math::policies::policy<>()); + return boost::math::make_tuple(n, n, n, result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_3e(mp_t x, mp_t p) +{ + mp_t r = ellint_rj_old(x, x, x, p, boost::math::policies::policy<>()); + return boost::math::make_tuple(x, x, x, p, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_1(mp_t x, mp_t y, mp_t p) +{ + mp_t r = ellint_rj_old(x, x, y, p, boost::math::policies::policy<>()); + return boost::math::make_tuple(x, x, y, p, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_2(mp_t x, mp_t y, mp_t p) +{ + mp_t r = ellint_rj_old(x, y, x, p, boost::math::policies::policy<>()); + return boost::math::make_tuple(x, y, x, p, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_3(mp_t x, mp_t y, mp_t p) +{ + mp_t r = ellint_rj_old(y, x, x, p, boost::math::policies::policy<>()); + return boost::math::make_tuple(y, x, x, p, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_4(mp_t x, mp_t y, mp_t p) +{ + mp_t r = ellint_rj_old(x, y, p, p, boost::math::policies::policy<>()); + return boost::math::make_tuple(x, y, p, p, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_2e_1(mp_t x, mp_t y) +{ + mp_t r = ellint_rd_imp_old(x, y, y, boost::math::policies::policy<>()); + return boost::math::make_tuple(x, y, y, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_2e_2(mp_t x, mp_t y) +{ + mp_t r = ellint_rd_imp_old(x, x, y, boost::math::policies::policy<>()); + return boost::math::make_tuple(x, x, y, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_2e_3(mp_t x) +{ + mp_t r = ellint_rd_imp_old(mp_t(0), x, x, boost::math::policies::policy<>()); + return boost::math::make_tuple(0, x, x, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_3e(mp_t x) +{ + mp_t r = ellint_rd_imp_old(x, x, x, boost::math::policies::policy<>()); + return boost::math::make_tuple(x, x, x, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_0xy(mp_t x, mp_t y) +{ + mp_t r = ellint_rd_imp_old(mp_t(0), x, y, boost::math::policies::policy<>()); + return boost::math::make_tuple(mp_t(0), x, y, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xxx(mp_t x) +{ + mp_t r = ellint_rf_imp_old(x, x, x, boost::math::policies::policy<>()); + return boost::math::make_tuple(x, x, x, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xyy(mp_t x, mp_t y) +{ + mp_t r = ellint_rf_imp_old(x, y, y, boost::math::policies::policy<>()); + return boost::math::make_tuple(x, y, y, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xxy(mp_t x, mp_t y) +{ + mp_t r = ellint_rf_imp_old(x, x, y, boost::math::policies::policy<>()); + return boost::math::make_tuple(x, x, y, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xyx(mp_t x, mp_t y) +{ + mp_t r = ellint_rf_imp_old(x, y, x, boost::math::policies::policy<>()); + return boost::math::make_tuple(x, y, x, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_0yy(mp_t y) +{ + mp_t r = ellint_rf_imp_old(mp_t(0), y, y, boost::math::policies::policy<>()); + return boost::math::make_tuple(mp_t(0), y, y, r); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xy0(mp_t x, mp_t y) +{ + mp_t r = ellint_rf_imp_old(x, y, mp_t(0), boost::math::policies::policy<>()); + return boost::math::make_tuple(x, y, mp_t(0), r); +} + boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data(mp_t n) { static boost::mt19937 r; @@ -99,11 +471,107 @@ boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data(mp_t n) return boost::math::make_tuple(xr, yr, zr, result); } -int cpp_main(int argc, char*argv []) +mp_t rg_imp(mp_t x, mp_t y, mp_t z) +{ + using std::swap; + // If z is zero permute so the call to RD is valid: + if(z == 0) + swap(x, z); + return (z * ellint_rf_imp_old(x, y, z, boost::math::policies::policy<>()) + - (x - z) * (y - z) * ellint_rd_imp_old(x, y, z, boost::math::policies::policy<>()) / 3 + + sqrt(x * y / z)) / 2; +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_data(mp_t n) +{ + static boost::mt19937 r; + boost::uniform_real<float> ur(0, 1); + boost::uniform_int<int> ui(-100, 100); + float x = ur(r); + x = ldexp(x, ui(r)); + mp_t xr(truncate_to_float(&x)); + float y = ur(r); + y = ldexp(y, ui(r)); + mp_t yr(truncate_to_float(&y)); + float z = ur(r); + z = ldexp(z, ui(r)); + mp_t zr(truncate_to_float(&z)); + + mp_t result = rg_imp(xr, yr, zr); + return boost::math::make_tuple(xr, yr, zr, result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xxx(mp_t x) +{ + mp_t result = rg_imp(x, x, x); + return boost::math::make_tuple(x, x, x, result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xyy(mp_t x, mp_t y) +{ + mp_t result = rg_imp(x, y, y); + return boost::math::make_tuple(x, y, y, result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xxy(mp_t x, mp_t y) +{ + mp_t result = rg_imp(x, x, y); + return boost::math::make_tuple(x, x, y, result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xyx(mp_t x, mp_t y) +{ + mp_t result = rg_imp(x, y, x); + return boost::math::make_tuple(x, y, x, result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_0xx(mp_t x) +{ + mp_t result = rg_imp(mp_t(0), x, x); + return boost::math::make_tuple(mp_t(0), x, x, result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_x0x(mp_t x) +{ + mp_t result = rg_imp(x, mp_t(0), x); + return boost::math::make_tuple(x, mp_t(0), x, result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xx0(mp_t x) +{ + mp_t result = rg_imp(x, x, mp_t(0)); + return boost::math::make_tuple(x, x, mp_t(0), result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_00x(mp_t x) +{ + mp_t result = sqrt(x) / 2; + return boost::math::make_tuple(mp_t(0), mp_t(0), x, result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_0x0(mp_t x) +{ + mp_t result = sqrt(x) / 2; + return boost::math::make_tuple(mp_t(0), x, mp_t(0), result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_x00(mp_t x) +{ + mp_t result = sqrt(x) / 2; + return boost::math::make_tuple(x, mp_t(0), mp_t(0), result); +} + +boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xy0(mp_t x, mp_t y) +{ + mp_t result = rg_imp(x, y, mp_t(0)); + return boost::math::make_tuple(x, y, mp_t(0), result); +} + +int cpp_main(int argc, char*argv[]) { using namespace boost::math::tools; - parameter_info<mp_t> arg1, arg2; + parameter_info<mp_t> arg1, arg2, arg3; test_data<mp_t> data; bool cont; @@ -113,6 +581,7 @@ int cpp_main(int argc, char*argv []) return 1; do{ +#if 0 int count; std::cout << "Number of points: "; std::cin >> count; @@ -129,6 +598,20 @@ int cpp_main(int argc, char*argv []) std::getline(std::cin, line); boost::algorithm::trim(line); cont = (line == "y"); +#else + get_user_parameter_info(arg1, "x"); + get_user_parameter_info(arg2, "y"); + //get_user_parameter_info(arg3, "p"); + arg1.type |= dummy_param; + arg2.type |= dummy_param; + //arg3.type |= dummy_param; + data.insert(generate_rd_data_0xy, arg1, arg2); + + std::cout << "Any more data [y/n]?"; + std::getline(std::cin, line); + boost::algorithm::trim(line); + cont = (line == "y"); +#endif }while(cont); std::cout << "Enter name of test data file [default=ellint_rf_data.ipp]"; diff --git a/libs/math/tools/doc/cstdfloat.qbk b/libs/math/tools/doc/cstdfloat.qbk new file mode 100644 index 000000000..5d9b2fd78 --- /dev/null +++ b/libs/math/tools/doc/cstdfloat.qbk @@ -0,0 +1,249 @@ +[book Standardized Floating-Point typedefs for C and C++ + + [quickbook 1.7] + [copyright 2014 Christopher Kormanyos, John Maddock, Paul A. Bristow] + [license + Distributed under the Boost Software License, Version 1.0. + (See accompanying file LICENSE_1_0.txt or copy at + [@http://www.boost.org/LICENSE_1_0.txt]) + ] + [authors [Kormanyos, Christopher], [Maddock, John], [Bristow, Paul A.] ] + [last-revision $Date$] + [/version 1.8.3] +] + +[template tr1[] [@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf Technical Report on C++ Library Extensions]] +[template C99[] [@http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf C99 Standard ISO/IEC 9899:1999]] + +[def __gsl [@http://www.gnu.org/software/gsl/ GSL-1.9]] +[def __glibc [@http://www.gnu.org/software/libc/ GNU C Lib]] +[def __hpc [@http://docs.hp.com/en/B9106-90010/index.html HP-UX C Library]] +[def __cephes [@http://www.netlib.org/cephes/ Cephes]] +[def __NTL [@http://www.shoup.net/ntl/ NTL A Library for doing Number Theory]] +[def __NTL_RR [@http://shoup.net/ntl/doc/RR.txt NTL::RR]] +[def __NTL_quad_float [@http://shoup.net/ntl/doc/quad_float.txt NTL::quad_float]] +[def __MPFR [@http://www.mpfr.org/ GNU MPFR library]] +[def __GMP [@http://gmplib.org/ GNU Multiple Precision Arithmetic Library]] +[def __multiprecision [@http://www.boost.org/doc/libs/1_53_0_beta1/libs/multiprecision/doc/html/index.html Boost.Multiprecision]] +[def __cpp_dec_float [@http://www.boost.org/doc/libs/1_53_0_beta1/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_dec_float.html cpp_dec_float]] +[def __R [@http://www.r-project.org/ The R Project for Statistical Computing]] +[def __godfrey [link godfrey Godfrey]] +[def __pugh [link pugh Pugh]] +[def __NaN [@http://en.wikipedia.org/wiki/NaN NaN]] +[def __errno [@http://en.wikipedia.org/wiki/Errno `::errno`]] +[def __Mathworld [@http://mathworld.wolfram.com Wolfram MathWorld]] +[def __Mathematica [@http://www.wolfram.com/products/mathematica/index.html Wolfram Mathematica]] +[def __WolframAlpha [@http://www.wolframalpha.com/ Wolfram Alpha]] +[def __TOMS748 [@http://portal.acm.org/citation.cfm?id=210111 TOMS Algorithm 748: enclosing zeros of continuous functions]] +[def __TOMS910 [@http://portal.acm.org/citation.cfm?id=1916469 TOMS Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations]] +[def __why_complements [link why_complements why complements?]] +[def __complements [link math_toolkit.stat_tut.overview.complements complements]] +[def __performance [link perf performance]] +[def __building [link math_toolkit.building building libraries]] +[def __e_float [@http://calgo.acm.org/910.zip e_float (TOMS Algorithm 910)]] +[def __Abramowitz_Stegun M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, NBS (1964)] +[def __DMLF [@http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]] +[def __IEEE754 [@http://en.wikipedia.org/wiki/IEEE_floating_point IEEE_floating_point]] +[def __N3626 [@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3626.pdf N3626]] +[def __N1703 [@http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1703.pdf N1703]] + +[/ Some composite templates] +[template super[x]'''<superscript>'''[x]'''</superscript>'''] +[template sub[x]'''<subscript>'''[x]'''</subscript>'''] +[template floor[x]'''⌊'''[x]'''⌋'''] +[template floorlr[x][lfloor][x][rfloor]] +[template ceil[x] '''⌈'''[x]'''⌉'''] + +[/template header_file[file] [@../../../../[file] [file]]] + +[note A printer-friendly PDF version of this manual is also available.] + +[section:overview Overview] + +The header `<boost/cstdfloat.hpp>` provides optional standardized +floating-point `typedef`s having specified widths. +These are useful for writing portable code because they +should behave identically on all platforms. +All `typedef`s are in `namespace boost`. + +The `typedef`s include `float16_t, float32_t, float64_t, float128_t`, +their corresponding least and fast types, +and the corresponding maximum-width type. +The `typedef`s are based on underlying built-in types +such as `float`, `double`, or `long double`, or based on other compiler-specific +non-standardized types such as `__float128`. +The underlying types of these typedef's must conform with +the corresponding specifications of binary16, binary32, binary64, +and binary128 in __IEEE754 floating-point format +[@http://en.wikipedia.org/wiki/IEEE_floating_point]. + +The typedef's are based on __N3626 +proposed for a new C++14 standard header `<cstdfloat>` and +__N1703 proposed for a new C language standard header `<stdfloat.h>`. + +The 128-bit floating-point type, of great interest in scientific and +numeric programming, is not required in the boost header, +and may not be supplied for all platforms/compilers, because compiler +support for a 128-bit floating-point type is not mandated by either +the C standard or the C++ standard. + +The following code uses `<boost/cstdfloat.hpp>` in combination with +`<boost/math/special_functions.hpp>` to compute a simplified +version of the Jahnke-Emden-Lambda function. Here, we use +a floating-point type with exactly 64 bits (i.e., `float64_t`). +If we were to use, for instance, built-in `double`, +then there would be no guarantee that the code would +behave identically on all platforms. With `float64_t` from +`<boost/cstdfloat.hpp>`, however, this is very likely. +Using `float64_t`, we know that +this code is portable and uses a floating-point type +with approximately 15 decimal digits of precision. + + #include <cmath> + #include <boost/cstdfloat.hpp> + #include <boost/math/special_functions.hpp> + + boost::float64_t jahnke_emden_lambda(boost::float64_t v, boost::float64_t x) + { + const boost::float64_t gamma_v_plus_one = boost::math::tgamma(v + 1); + const boost::float64_t x_half_pow_v = std::pow(x / 2, v); + + return gamma_v_plus_one * boost::math::cyl_bessel_j(x, v) / x_half_pow_v; + } + +See `cstdfloat_test.cpp` for a more detailed test program. + +[endsect] [/section:overview Overview] + +[section:rationale Rationale] + +The implementation of `<boost/cstdfloat.hpp>` is designed to utilize `<float.h>`, +defined in the 1989 C standard. The preprocessor is used to query certain +preprocessor definitions in `<float.h>` such as FLT_MAX, DBL_MAX, etc. +Based on the results of these queries, an attempt is made to automatically +detect the presence of built-in floating-point types having specified widths. +An unequivocal test regarding conformance with __IEEE754 (IEC599) based on +[@ http://en.cppreference.com/w/cpp/types/numeric_limits/is_iec559 `std::numeric_limits<>::is_iec559`] +is performed with `BOOST_STATIC_ASSERT`. + +The header `<boost/cstdfloat.hpp>` makes the standardized floating-point +`typedef`s safely available in `namespace boost` without placing any names +in `namespace std`. The intention is to complement rather than compete +with a potential future C++ Standard Library that may contain these `typedef`s. +Should some future C++ standard include `<stdfloat.h>` and `<cstdfloat>`, +then `<boost/cstdfloat.hpp>` will continue to function, but will become redundant +and may be safely deprecated. + +Because `<boost/cstdfloat.hpp>` is a boost header, its name conforms to the +boost header naming conventions, not the C++ Standard Library header +naming conventions. + +[note +<boost/cstdfloat.hpp> [*cannot synthesize or create +a `typedef` if the underlying type is not provided by the compiler]. +For example, if a compiler does not have an underlying floating-point +type with 128 bits (highly sought-after in scientific and numeric programming), +then `float128_t` and its corresponding least and fast types are not +provided by `<boost/cstdfloat.hpp`>.] + +[warning +As an implementation artifact, certain C macro names from `<float.h>` +may possibly be visible to users of `<boost/cstdfloat.hpp>`. +Don't rely on using these macros; they are not part of any Boost-specified interface. +Use `std::numeric_limits<>` for floating-point ranges, etc. instead.] + +[endsect] [/section:rationale Rationale] + +[section:exact_typdefs Exact-Width Floating-Point `typedef`s] + +The `typedef float#_t`, with # replaced by the width, designates a +floating-point type of exactly # bits. For example `float32_t` denotes +a single-precision floating-point type with approximately +7 decimal digits of precision (equivalent to binary32 in __IEEE754). + +Floating-point types specified in C and C++ are allowed to have +implementation-specific widths and formats. +However, if a platform supports underlying floating-point types +(conformant with __IEEE754) with widths of 16, 32, 64, 128 bits, +or any combination thereof, +then `<boost/cstdfloat.hpp>` does provide the corresponding `typedef`s +`float16_t, float32_t, float64_t, float128_t,` +their corresponding least and fast types, +and the corresponding maximum-width type + +The absence of `float128_t` is indicated by the macro `BOOST_NO_FLOAT128_T`. + +[endsect] [/section:exact_typdefs Exact-Width Floating-Point `typedef`s] + + +[section:fastest_typdefs Fastest minimum-width floating-point `typedef`s] + +The `typedef float_least#_t`, with # replaced by the width, designates a +floating-point type with a [*width of at least # bits], such that no +floating-point type with lesser size has at least the specified width. +Thus, `float_least32_t` denotes the smallest floating-point type with +a width of at least 32 bits. + +Minimum-width floating-point types are provided for all existing +exact-width floating-point types on a given platform. + +For example, if a platfrom supports `float32_t` and `float64_t`, +then `float_least32_t` and `float_least64_t` will also be supported, etc. + +[endsect] [/section:fastest_typdefs Fastest minimum-width floating-point `typedef`s] + +[section:fastest_typdefs Fastest minimum-width floating-point `typedef`s] + +The typedef `float_fast#_t`, with # replaced by the width, designates +the [*fastest] floating-point type with a width of at least # bits. + +There is no absolute guarantee that these types are the fastest for all purposes. +In any case, however, they satisfy the precision and width requirements. + +Fastest minimum-width floating-point types are provided for all existing +exact-width floating-point types on a given platform. + +For example, if a platform supports `float32_t` and `float64_t`, +then `float_fast32_t` and `float_fast64_t` will also be supported, etc. + +[endsect] [/section:fastest_typdefs Fastest minimum-width floating-point `typedef`s] + +[section:greatest_typdefs Greatest-width floating-point typedef] + +The `typedef floatmax_t` designates a floating-point type capable of representing +any value of any floating-point type in a given platform. + +The greatest-width typedef is provided for all platforms. + +[endsect] [/section:greatest_typdefs Greatest-width floating-point typedef] + +[section:macros Floating-Point Constant Macros] + +All macros of the type `BOOST_FLOAT16_C, BOOST_FLOAT32_C, BOOST_FLOAT64_C, +BOOST_FLOAT128_C, BOOST_FLOATMAX_C` are always defined after inclusion of +`<boost/cstdfloat.hpp>`. These allow floating-point constants of at +least the specified width to be declared. + +For example: + + #include <boost/cstdfloat.hpp> + + // Declare Pythagoras' constant with approximately 7 decimal digits of precision. + static const boost::float32_t pi = BOOST_FLOAT32_C(3.1415926536); + + // Declare the Euler-gamma constant with approximately 34 decimal digits of precision. + static const boost::float128_t euler = BOOST_FLOAT128_C(0.57721566490153286060651209008240243104216); + +[endsect] [/section:macros Floating-Point Constant Macros] + + +[/ cstdfloat.qbk + Copyright 2014 Christopher Kormanyos, John Maddock and Paul A. Bristow. + Distributed under the Boost Software License, Version 1.0. + (See accompanying file LICENSE_1_0.txt or copy at + http://www.boost.org/LICENSE_1_0.txt). +] + + + + diff --git a/libs/math/tools/ellint_d2_data.cpp b/libs/math/tools/ellint_d2_data.cpp new file mode 100644 index 000000000..79263711b --- /dev/null +++ b/libs/math/tools/ellint_d2_data.cpp @@ -0,0 +1,64 @@ +// Copyright John Maddock 2006. +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt +// or copy at http://www.boost.org/LICENSE_1_0.txt) +#include <boost/math/tools/test_data.hpp> +#include <boost/test/included/prg_exec_monitor.hpp> +#include <boost/math/special_functions/ellint_1.hpp> +#include <boost/math/special_functions/ellint_2.hpp> +#include <fstream> +#include <boost/math/tools/test_data.hpp> +#include "mp_t.hpp" + +using namespace boost::math::tools; +using namespace boost::math; +using namespace std; + +mp_t ellint_d(mp_t phi, mp_t k) +{ + return (boost::math::ellint_1(k, phi) - boost::math::ellint_2(k, phi)) / (k * k); +} + +int cpp_main(int argc, char*argv []) +{ + using namespace boost::math::tools; + + parameter_info<mp_t> arg1, arg2; + test_data<mp_t> data; + + bool cont; + std::string line; + + if(argc < 1) + return 1; + + do{ + if(0 == get_user_parameter_info(arg1, "phi")) + return 1; + if(0 == get_user_parameter_info(arg2, "k")) + return 1; + + mp_t(*fp)(mp_t, mp_t) = &ellint_d; + data.insert(fp, arg1, arg2); + + std::cout << "Any more data [y/n]?"; + std::getline(std::cin, line); + boost::algorithm::trim(line); + cont = (line == "y"); + }while(cont); + + std::cout << "Enter name of test data file [default=ellint_d2_data.ipp]"; + std::getline(std::cin, line); + boost::algorithm::trim(line); + if(line == "") + line = "ellint_d2_data.ipp"; + std::ofstream ofs(line.c_str()); + line.erase(line.find('.')); + ofs << std::scientific << std::setprecision(40); + write_code(ofs, data, line.c_str()); + + return 0; +} + + diff --git a/libs/math/tools/ellint_d_data.cpp b/libs/math/tools/ellint_d_data.cpp new file mode 100644 index 000000000..f2c30f37c --- /dev/null +++ b/libs/math/tools/ellint_d_data.cpp @@ -0,0 +1,62 @@ +// Copyright John Maddock 2006. +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt +// or copy at http://www.boost.org/LICENSE_1_0.txt) +#include <boost/math/tools/test_data.hpp> +#include <boost/test/included/prg_exec_monitor.hpp> +#include <boost/math/special_functions/ellint_1.hpp> +#include <boost/math/special_functions/ellint_2.hpp> +#include <fstream> +#include <boost/math/tools/test_data.hpp> +#include "mp_t.hpp" + +using namespace boost::math::tools; +using namespace boost::math; +using namespace std; + +mp_t ellint_d(mp_t k) +{ + return (boost::math::ellint_1(k) - boost::math::ellint_2(k)) / (k * k); +} + +int cpp_main(int argc, char*argv []) +{ + using namespace boost::math::tools; + + parameter_info<mp_t> arg1; + test_data<mp_t> data; + + bool cont; + std::string line; + + if(argc < 1) + return 1; + + do{ + if(0 == get_user_parameter_info(arg1, "k")) + return 1; + + mp_t(*fp)(mp_t) = &ellint_d; + data.insert(fp, arg1); + + std::cout << "Any more data [y/n]?"; + std::getline(std::cin, line); + boost::algorithm::trim(line); + cont = (line == "y"); + }while(cont); + + std::cout << "Enter name of test data file [default=ellint_d_data.ipp]"; + std::getline(std::cin, line); + boost::algorithm::trim(line); + if(line == "") + line = "ellint_d_data.ipp"; + std::ofstream ofs(line.c_str()); + line.erase(line.find('.')); + ofs << std::scientific << std::setprecision(40); + write_code(ofs, data, line.c_str()); + + return 0; +} + + diff --git a/libs/math/tools/heuman_lambda_data.cpp b/libs/math/tools/heuman_lambda_data.cpp new file mode 100644 index 000000000..44aa3803b --- /dev/null +++ b/libs/math/tools/heuman_lambda_data.cpp @@ -0,0 +1,67 @@ +// Copyright John Maddock 2006. +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt +// or copy at http://www.boost.org/LICENSE_1_0.txt) +#include <boost/math/tools/test_data.hpp> +#include <boost/test/included/prg_exec_monitor.hpp> +#include <boost/math/special_functions/ellint_1.hpp> +#include <boost/math/special_functions/jacobi_zeta.hpp> +#include <fstream> +#include <boost/math/tools/test_data.hpp> +#include "mp_t.hpp" + +using namespace boost::math::tools; +using namespace boost::math; +using namespace std; + +mp_t heuman_lambda(mp_t phi, mp_t k) +{ + mp_t kp = sqrt(1 - k *k); + if((k * k < tools::epsilon<float>()) && (fabs(phi) >= constants::half_pi<mp_t>())) + throw std::domain_error(""); + return ellint_1(kp, phi) / ellint_1(kp) + ellint_1(k) * jacobi_zeta(kp, phi) / constants::half_pi<mp_t>(); +} + +int cpp_main(int argc, char*argv []) +{ + using namespace boost::math::tools; + + parameter_info<mp_t> arg1, arg2; + test_data<mp_t> data; + + bool cont; + std::string line; + + if(argc < 1) + return 1; + + do{ + if(0 == get_user_parameter_info(arg1, "phi")) + return 1; + if(0 == get_user_parameter_info(arg2, "k")) + return 1; + + mp_t(*fp)(mp_t, mp_t) = &heuman_lambda; + data.insert(fp, arg1, arg2); + + std::cout << "Any more data [y/n]?"; + std::getline(std::cin, line); + boost::algorithm::trim(line); + cont = (line == "y"); + }while(cont); + + std::cout << "Enter name of test data file [default=heuman_lambda_data.ipp]"; + std::getline(std::cin, line); + boost::algorithm::trim(line); + if(line == "") + line = "heuman_lambda_data.ipp"; + std::ofstream ofs(line.c_str()); + line.erase(line.find('.')); + ofs << std::scientific << std::setprecision(40); + write_code(ofs, data, line.c_str()); + + return 0; +} + + diff --git a/libs/math/tools/jacobi_zeta_data.cpp b/libs/math/tools/jacobi_zeta_data.cpp new file mode 100644 index 000000000..ded652301 --- /dev/null +++ b/libs/math/tools/jacobi_zeta_data.cpp @@ -0,0 +1,64 @@ +// Copyright John Maddock 2006. +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt +// or copy at http://www.boost.org/LICENSE_1_0.txt) +#include <boost/math/tools/test_data.hpp> +#include <boost/test/included/prg_exec_monitor.hpp> +#include <boost/math/special_functions/ellint_1.hpp> +#include <boost/math/special_functions/ellint_2.hpp> +#include <fstream> +#include <boost/math/tools/test_data.hpp> +#include "mp_t.hpp" + +using namespace boost::math::tools; +using namespace boost::math; +using namespace std; + +mp_t jacobi_zeta(mp_t phi, mp_t k) +{ + return ellint_2(k, phi) - ellint_2(k) * ellint_1(k, phi) / ellint_1(k); +} + +int cpp_main(int argc, char*argv []) +{ + using namespace boost::math::tools; + + parameter_info<mp_t> arg1, arg2; + test_data<mp_t> data; + + bool cont; + std::string line; + + if(argc < 1) + return 1; + + do{ + if(0 == get_user_parameter_info(arg1, "phi")) + return 1; + if(0 == get_user_parameter_info(arg2, "k")) + return 1; + + mp_t(*fp)(mp_t, mp_t) = &jacobi_zeta; + data.insert(fp, arg1, arg2); + + std::cout << "Any more data [y/n]?"; + std::getline(std::cin, line); + boost::algorithm::trim(line); + cont = (line == "y"); + }while(cont); + + std::cout << "Enter name of test data file [default=jacobi_zeta_data.ipp]"; + std::getline(std::cin, line); + boost::algorithm::trim(line); + if(line == "") + line = "jacobi_zeta_data.ipp"; + std::ofstream ofs(line.c_str()); + line.erase(line.find('.')); + ofs << std::scientific << std::setprecision(40); + write_code(ofs, data, line.c_str()); + + return 0; +} + + diff --git a/libs/math/tools/trig_data.cpp b/libs/math/tools/trig_data.cpp new file mode 100644 index 000000000..41233578f --- /dev/null +++ b/libs/math/tools/trig_data.cpp @@ -0,0 +1,83 @@ +// (C) Copyright John Maddock 2006. +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + +#include <boost/math/constants/constants.hpp> +#include <fstream> +#include <boost/math/tools/test_data.hpp> +#include "mp_t.hpp" + +using namespace boost::math::tools; +using namespace std; + +float external_f; +float force_truncate(const float* f) +{ + external_f = *f; + return external_f; +} + +float truncate_to_float(mp_t r) +{ + float f = boost::math::tools::real_cast<float>(r); + return force_truncate(&f); +} + +struct trig_data_generator +{ + boost::math::tuple<mp_t, mp_t> operator()(mp_t z) + { + return boost::math::make_tuple(sin(z * boost::math::constants::pi<mp_t>()), cos(z * boost::math::constants::pi<mp_t>())); + } +}; + + +int main(int argc, char*argv []) +{ + parameter_info<mp_t> arg1; + test_data<mp_t> data; + + bool cont; + std::string line; + + std::cout << "Welcome.\n" + "This program will generate spot tests for the cos_pi and sin_pi functions:\n"; + + do{ + if(0 == get_user_parameter_info(arg1, "a")) + return 1; + data.insert(trig_data_generator(), arg1); + + std::cout << "Any more data [y/n]?"; + std::getline(std::cin, line); + boost::algorithm::trim(line); + cont = (line == "y"); + }while(cont); + + std::cout << "Enter name of test data file [default=trig_data.ipp]"; + std::getline(std::cin, line); + boost::algorithm::trim(line); + if(line == "") + line = "trig_data.ipp"; + std::ofstream ofs(line.c_str()); + ofs << std::scientific << std::setprecision(40); + write_code(ofs, data, "trig_data"); + + return 0; +} + +/* Output for asymptotic limits: + +Erf asymptotic limit for 24 bit numbers is 2.8 after approximately 6 terms. +Erfc asymptotic limit for 24 bit numbers is 4.12064 after approximately 17 terms. +Erf asymptotic limit for 53 bit numbers is 4.3 after approximately 11 terms. +Erfc asymptotic limit for 53 bit numbers is 6.19035 after approximately 29 terms. +Erf asymptotic limit for 64 bit numbers is 4.8 after approximately 12 terms. +Erfc asymptotic limit for 64 bit numbers is 7.06004 after approximately 29 terms. +Erf asymptotic limit for 106 bit numbers is 6.5 after approximately 14 terms. +Erfc asymptotic limit for 106 bit numbers is 11.6626 after approximately 29 terms. +Erf asymptotic limit for 113 bit numbers is 6.8 after approximately 14 terms. +Erfc asymptotic limit for 113 bit numbers is 12.6802 after approximately 29 terms. +*/ + |