1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
|
/*! \file dist_graphs.cpp
\brief Produces Scalable Vector Graphic (.svg) files for all distributions.
\details These files can be viewed using most browsers,
though MS Internet Explorer requires a plugin from Adobe.
These file can be converted to .png using Inkscape
(see www.inkscape.org) Export Bit option which by default produces
a Portable Network Graphic file with that same filename but .png suffix instead of .svg.
Using Python, generate.sh does this conversion automatically for all .svg files in a folder.
\author John Maddock and Paul A. Bristow
*/
// Copyright John Maddock 2008.
// Copyright Paul A. Bristow 2008, 2009, 2012
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifdef _MSC_VER
# pragma warning (disable : 4180) // qualifier applied to function type has no meaning; ignored
# pragma warning (disable : 4503) // decorated name length exceeded, name was truncated
# pragma warning (disable : 4512) // assignment operator could not be generated
# pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'function_ptr' was previously defined as a type
# pragma warning (disable : 4127) // conditional expression is constant
#endif
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <boost/math/distributions.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/svg_plot/svg_2d_plot.hpp>
#include <list>
#include <map>
#include <string>
template <class Dist>
struct is_discrete_distribution
: public boost::mpl::false_{};
template<class T, class P>
struct is_discrete_distribution<boost::math::bernoulli_distribution<T,P> >
: public boost::mpl::true_{};
template<class T, class P>
struct is_discrete_distribution<boost::math::binomial_distribution<T,P> >
: public boost::mpl::true_{};
template<class T, class P>
struct is_discrete_distribution<boost::math::negative_binomial_distribution<T,P> >
: public boost::mpl::true_{};
template<class T, class P>
struct is_discrete_distribution<boost::math::poisson_distribution<T,P> >
: public boost::mpl::true_{};
template<class T, class P>
struct is_discrete_distribution<boost::math::hypergeometric_distribution<T,P> >
: public boost::mpl::true_{};
template <class Dist>
struct value_finder
{
value_finder(Dist const& d, typename Dist::value_type v)
: m_dist(d), m_value(v) {}
inline typename Dist::value_type operator()(const typename Dist::value_type& x)
{
return pdf(m_dist, x) - m_value;
}
private:
Dist m_dist;
typename Dist::value_type m_value;
};
template <class Dist>
class distribution_plotter
{
public:
distribution_plotter() : m_pdf(true), m_min_x(0), m_max_x(0), m_min_y(0), m_max_y(0) {}
distribution_plotter(bool pdf) : m_pdf(pdf), m_min_x(0), m_max_x(0), m_min_y(0), m_max_y(0) {}
void add(const Dist& d, const std::string& name)
{
// Add name of distribution to our list for later:
m_distributions.push_back(std::make_pair(name, d));
//
// Get the extent of the distribution from the support:
double a, b;
std::tr1::tie(a, b) = support(d);
//
// PDF maximimum is at the mode (probably):
double mod;
try
{
mod = mode(d);
}
catch(const std::domain_error& )
{ // but if not use the lower limit of support.
mod = a;
}
if((mod <= a) && !is_discrete_distribution<Dist>::value)
{ // Continuous distribution at or below lower limit of support.
double margin = 1e-2; // Margin of 1% (say) to get lowest off the 'end stop'.
if((a != 0) && (fabs(a) > margin))
{
mod = a * (1 + ((a > 0) ? margin : -margin));
}
else
{ // Case of mod near zero?
mod = margin;
}
}
double peek_y = pdf(d, mod);
double min_y = peek_y / 20;
//
// If the extent is "infinite" then find out how large it
// has to be for the PDF to decay to min_y:
//
if(a <= -(std::numeric_limits<double>::max)())
{
boost::uintmax_t max_iter = 500;
double guess = mod;
if((pdf(d, 0) > min_y) || (guess == 0))
guess = -1e-3;
a = boost::math::tools::bracket_and_solve_root(
value_finder<Dist>(d, min_y),
guess,
8.0,
true,
boost::math::tools::eps_tolerance<double>(10),
max_iter).first;
}
if(b >= (std::numeric_limits<double>::max)())
{
boost::uintmax_t max_iter = 500;
double guess = mod;
if(a <= 0)
if((pdf(d, 0) > min_y) || (guess == 0))
guess = 1e-3;
b = boost::math::tools::bracket_and_solve_root(
value_finder<Dist>(d, min_y),
guess,
8.0,
false,
boost::math::tools::eps_tolerance<double>(10),
max_iter).first;
}
//
// Recalculate peek_y and location of mod so that
// it's not too close to one end of the graph:
// otherwise we may be shooting off to infinity.
//
if(!is_discrete_distribution<Dist>::value)
{
if(mod <= a + (b-a)/50)
{
mod = a + (b-a)/50;
}
if(mod >= b - (b-a)/50)
{
mod = b - (b-a)/50;
}
peek_y = pdf(d, mod);
}
//
// Now set our limits:
//
if(peek_y > m_max_y)
m_max_y = peek_y;
if(m_max_x == m_min_x)
{
m_max_x = b;
m_min_x = a;
}
else
{
if(a < m_min_x)
m_min_x = a;
if(b > m_max_x)
m_max_x = b;
}
}
void plot(const std::string& title, const std::string& file)
{
using namespace boost::svg;
static const svg_color colors[5] =
{
darkblue,
darkred,
darkgreen,
darkorange,
chartreuse
};
if(m_pdf == false)
{
m_min_y = 0;
m_max_y = 1;
}
svg_2d_plot plot;
plot.image_x_size(750);
plot.image_y_size(400);
plot.coord_precision(4); // Avoids any visible steps.
plot.title_font_size(20);
plot.legend_title_font_size(15);
plot.title(title);
if((m_distributions.size() == 1) && (m_distributions.begin()->first == ""))
plot.legend_on(false);
else
plot.legend_on(true);
plot.title_on(true);
//plot.x_major_labels_on(true).y_major_labels_on(true);
//double x_delta = (m_max_x - m_min_x) / 10;
double y_delta = (m_max_y - m_min_y) / 10;
if(is_discrete_distribution<Dist>::value)
plot.x_range(m_min_x - 0.5, m_max_x + 0.5)
.y_range(m_min_y, m_max_y + y_delta);
else
plot.x_range(m_min_x, m_max_x)
.y_range(m_min_y, m_max_y + y_delta);
plot.x_label_on(true).x_label("Random Variable");
plot.y_label_on(true).y_label("Probability");
plot.plot_border_color(lightslategray)
.background_border_color(lightslategray)
.legend_border_color(lightslategray)
.legend_background_color(white);
//
// Work out axis tick intervals:
//
double l = std::floor(std::log10((m_max_x - m_min_x) / 10) + 0.5);
double interval = std::pow(10.0, (int)l);
if(((m_max_x - m_min_x) / interval) > 10)
interval *= 5;
if(is_discrete_distribution<Dist>::value)
{
interval = interval > 1 ? std::floor(interval) : 1;
plot.x_num_minor_ticks(0);
}
plot.x_major_interval(interval);
l = std::floor(std::log10((m_max_y - m_min_y) / 10) + 0.5);
interval = std::pow(10.0, (int)l);
if(((m_max_y - m_min_y) / interval) > 10)
interval *= 5;
plot.y_major_interval(interval);
int color_index = 0;
if(!is_discrete_distribution<Dist>::value)
{
//
// Continuous distribution:
//
for(std::list<std::pair<std::string, Dist> >::const_iterator i = m_distributions.begin();
i != m_distributions.end(); ++i)
{
double x = m_min_x;
double interval = (m_max_x - m_min_x) / 200;
std::map<double, double> data;
while(x <= m_max_x)
{
data[x] = m_pdf ? pdf(i->second, x) : cdf(i->second, x);
x += interval;
}
plot.plot(data, i->first)
.line_on(true)
.line_color(colors[color_index])
.line_width(1.)
.shape(none);
//.bezier_on(true) // Bezier can't cope with badly behaved like uniform & triangular.
++color_index;
color_index = color_index % (sizeof(colors)/sizeof(colors[0]));
}
}
else
{
//
// Discrete distribution:
//
double x_width = 0.75 / m_distributions.size();
double x_off = -0.5 * 0.75;
for(std::list<std::pair<std::string, Dist> >::const_iterator i = m_distributions.begin();
i != m_distributions.end(); ++i)
{
double x = ceil(m_min_x);
double interval = 1;
std::map<double, double> data;
while(x <= m_max_x)
{
double p;
try{
p = m_pdf ? pdf(i->second, x) : cdf(i->second, x);
}
catch(const std::domain_error&)
{
p = 0;
}
data[x + x_off] = 0;
data[x + x_off + 0.00001] = p;
data[x + x_off + x_width] = p;
data[x + x_off + x_width + 0.00001] = 0;
x += interval;
}
x_off += x_width;
svg_2d_plot_series& s = plot.plot(data, i->first);
s.line_on(true)
.line_color(colors[color_index])
.line_width(1.)
.shape(none)
.area_fill(colors[color_index]);
++color_index;
color_index = color_index % (sizeof(colors)/sizeof(colors[0]));
}
}
plot.write(file);
}
private:
bool m_pdf;
std::list<std::pair<std::string, Dist> > m_distributions;
double m_min_x, m_max_x, m_min_y, m_max_y;
};
int main()
{
try
{
distribution_plotter<boost::math::gamma_distribution<> >
gamma_plotter;
gamma_plotter.add(boost::math::gamma_distribution<>(0.75), "shape = 0.75");
gamma_plotter.add(boost::math::gamma_distribution<>(1), "shape = 1");
gamma_plotter.add(boost::math::gamma_distribution<>(3), "shape = 3");
gamma_plotter.plot("Gamma Distribution PDF With Scale = 1", "gamma1_pdf.svg");
distribution_plotter<boost::math::gamma_distribution<> >
gamma_plotter2;
gamma_plotter2.add(boost::math::gamma_distribution<>(2, 0.5), "scale = 0.5");
gamma_plotter2.add(boost::math::gamma_distribution<>(2, 1), "scale = 1");
gamma_plotter2.add(boost::math::gamma_distribution<>(2, 2), "scale = 2");
gamma_plotter2.plot("Gamma Distribution PDF With Shape = 2", "gamma2_pdf.svg");
distribution_plotter<boost::math::normal>
normal_plotter;
normal_plotter.add(boost::math::normal(0, 1), "μ = 0, σ = 1");
normal_plotter.add(boost::math::normal(0, 0.5), "μ = 0, σ = 0.5");
normal_plotter.add(boost::math::normal(0, 2), "μ = 0, σ = 2");
normal_plotter.add(boost::math::normal(-1, 1), "μ = -1, σ = 1");
normal_plotter.add(boost::math::normal(1, 1), "μ = 1, σ = 1");
normal_plotter.plot("Normal Distribution PDF", "normal_pdf.svg");
distribution_plotter<boost::math::laplace>
laplace_plotter;
laplace_plotter.add(boost::math::laplace(0, 1), "μ = 0, σ = 1");
laplace_plotter.add(boost::math::laplace(0, 0.5), "μ = 0, σ = 0.5");
laplace_plotter.add(boost::math::laplace(0, 2), "μ = 0, σ = 2");
laplace_plotter.add(boost::math::laplace(-1, 1), "μ = -1, σ = 1");
laplace_plotter.add(boost::math::laplace(1, 1), "μ = 1, σ = 1");
laplace_plotter.plot("Laplace Distribution PDF", "laplace_pdf.svg");
distribution_plotter<boost::math::non_central_chi_squared>
nc_cs_plotter;
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 0), "v=20, λ=0");
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 1), "v=20, λ=1");
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 5), "v=20, λ=5");
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 10), "v=20, λ=10");
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 20), "v=20, λ=20");
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 100), "v=20, λ=100");
nc_cs_plotter.plot("Non Central Chi Squared PDF", "nccs_pdf.svg");
distribution_plotter<boost::math::non_central_beta>
nc_beta_plotter;
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 0), "α=10, β=15, δ=0");
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 1), "α=10, β=15, δ=1");
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 5), "α=10, β=15, δ=5");
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 10), "α=10, β=15, δ=10");
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 40), "α=10, β=15, δ=40");
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 100), "α=10, β=15, δ=100");
nc_beta_plotter.plot("Non Central Beta PDF", "nc_beta_pdf.svg");
distribution_plotter<boost::math::non_central_f>
nc_f_plotter;
nc_f_plotter.add(boost::math::non_central_f(10, 20, 0), "v1=10, v2=20, λ=0");
nc_f_plotter.add(boost::math::non_central_f(10, 20, 1), "v1=10, v2=20, λ=1");
nc_f_plotter.add(boost::math::non_central_f(10, 20, 5), "v1=10, v2=20, λ=5");
nc_f_plotter.add(boost::math::non_central_f(10, 20, 10), "v1=10, v2=20, λ=10");
nc_f_plotter.add(boost::math::non_central_f(10, 20, 40), "v1=10, v2=20, λ=40");
nc_f_plotter.add(boost::math::non_central_f(10, 20, 100), "v1=10, v2=20, λ=100");
nc_f_plotter.plot("Non Central F PDF", "nc_f_pdf.svg");
distribution_plotter<boost::math::non_central_t>
nc_t_plotter;
nc_t_plotter.add(boost::math::non_central_t(10, -10), "v=10, δ=-10");
nc_t_plotter.add(boost::math::non_central_t(10, -5), "v=10, δ=-5");
nc_t_plotter.add(boost::math::non_central_t(10, 0), "v=10, δ=0");
nc_t_plotter.add(boost::math::non_central_t(10, 5), "v=10, δ=5");
nc_t_plotter.add(boost::math::non_central_t(10, 10), "v=10, δ=10");
nc_t_plotter.add(boost::math::non_central_t(std::numeric_limits<double>::infinity(), 15), "v=inf, δ=15");
nc_t_plotter.plot("Non Central T PDF", "nc_t_pdf.svg");
distribution_plotter<boost::math::non_central_t>
nc_t_CDF_plotter(false);
nc_t_CDF_plotter.add(boost::math::non_central_t(10, -10), "v=10, δ=-10");
nc_t_CDF_plotter.add(boost::math::non_central_t(10, -5), "v=10, δ=-5");
nc_t_CDF_plotter.add(boost::math::non_central_t(10, 0), "v=10, δ=0");
nc_t_CDF_plotter.add(boost::math::non_central_t(10, 5), "v=10, δ=5");
nc_t_CDF_plotter.add(boost::math::non_central_t(10, 10), "v=10, δ=10");
nc_t_CDF_plotter.add(boost::math::non_central_t(std::numeric_limits<double>::infinity(), 15), "v=inf, δ=15");
nc_t_CDF_plotter.plot("Non Central T CDF", "nc_t_cdf.svg");
distribution_plotter<boost::math::beta_distribution<> >
beta_plotter;
beta_plotter.add(boost::math::beta_distribution<>(0.5, 0.5), "alpha=0.5, beta=0.5");
beta_plotter.add(boost::math::beta_distribution<>(5, 1), "alpha=5, beta=1");
beta_plotter.add(boost::math::beta_distribution<>(1, 3), "alpha=1, beta=3");
beta_plotter.add(boost::math::beta_distribution<>(2, 2), "alpha=2, beta=2");
beta_plotter.add(boost::math::beta_distribution<>(2, 5), "alpha=2, beta=5");
beta_plotter.plot("Beta Distribution PDF", "beta_pdf.svg");
distribution_plotter<boost::math::cauchy_distribution<> >
cauchy_plotter;
cauchy_plotter.add(boost::math::cauchy_distribution<>(-5, 1), "location = -5");
cauchy_plotter.add(boost::math::cauchy_distribution<>(0, 1), "location = 0");
cauchy_plotter.add(boost::math::cauchy_distribution<>(5, 1), "location = 5");
cauchy_plotter.plot("Cauchy Distribution PDF (scale = 1)", "cauchy_pdf1.svg");
distribution_plotter<boost::math::cauchy_distribution<> >
cauchy_plotter2;
cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 0.5), "scale = 0.5");
cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 1), "scale = 1");
cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 2), "scale = 2");
cauchy_plotter2.plot("Cauchy Distribution PDF (location = 0)", "cauchy_pdf2.svg");
distribution_plotter<boost::math::chi_squared_distribution<> >
chi_squared_plotter;
//chi_squared_plotter.add(boost::math::chi_squared_distribution<>(1), "v=1");
chi_squared_plotter.add(boost::math::chi_squared_distribution<>(2), "v=2");
chi_squared_plotter.add(boost::math::chi_squared_distribution<>(5), "v=5");
chi_squared_plotter.add(boost::math::chi_squared_distribution<>(10), "v=10");
chi_squared_plotter.plot("Chi Squared Distribution PDF", "chi_squared_pdf.svg");
distribution_plotter<boost::math::exponential_distribution<> >
exponential_plotter;
exponential_plotter.add(boost::math::exponential_distribution<>(0.5), "λ=0.5");
exponential_plotter.add(boost::math::exponential_distribution<>(1), "λ=1");
exponential_plotter.add(boost::math::exponential_distribution<>(2), "λ=2");
exponential_plotter.plot("Exponential Distribution PDF", "exponential_pdf.svg");
distribution_plotter<boost::math::extreme_value_distribution<> >
extreme_value_plotter;
extreme_value_plotter.add(boost::math::extreme_value_distribution<>(-5), "location=-5");
extreme_value_plotter.add(boost::math::extreme_value_distribution<>(0), "location=0");
extreme_value_plotter.add(boost::math::extreme_value_distribution<>(5), "location=5");
extreme_value_plotter.plot("Extreme Value Distribution PDF (shape=1)", "extreme_value_pdf1.svg");
distribution_plotter<boost::math::extreme_value_distribution<> >
extreme_value_plotter2;
extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 0.5), "shape=0.5");
extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 1), "shape=1");
extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 2), "shape=2");
extreme_value_plotter2.plot("Extreme Value Distribution PDF (location=0)", "extreme_value_pdf2.svg");
distribution_plotter<boost::math::fisher_f_distribution<> >
fisher_f_plotter;
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(4, 4), "n=4, m=4");
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(10, 4), "n=10, m=4");
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(10, 10), "n=10, m=10");
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(4, 10), "n=4, m=10");
fisher_f_plotter.plot("F Distribution PDF", "fisher_f_pdf.svg");
distribution_plotter<boost::math::lognormal_distribution<> >
lognormal_plotter;
lognormal_plotter.add(boost::math::lognormal_distribution<>(-1), "location=-1");
lognormal_plotter.add(boost::math::lognormal_distribution<>(0), "location=0");
lognormal_plotter.add(boost::math::lognormal_distribution<>(1), "location=1");
lognormal_plotter.plot("Lognormal Distribution PDF (scale=1)", "lognormal_pdf1.svg");
distribution_plotter<boost::math::lognormal_distribution<> >
lognormal_plotter2;
lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 0.5), "scale=0.5");
lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 1), "scale=1");
lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 2), "scale=2");
lognormal_plotter2.plot("Lognormal Distribution PDF (location=0)", "lognormal_pdf2.svg");
distribution_plotter<boost::math::pareto_distribution<> >
pareto_plotter; // Rely on 2nd parameter shape = 1 default.
pareto_plotter.add(boost::math::pareto_distribution<>(1), "scale=1");
pareto_plotter.add(boost::math::pareto_distribution<>(2), "scale=2");
pareto_plotter.add(boost::math::pareto_distribution<>(3), "scale=3");
pareto_plotter.plot("Pareto Distribution PDF (shape=1)", "pareto_pdf1.svg");
distribution_plotter<boost::math::pareto_distribution<> >
pareto_plotter2;
pareto_plotter2.add(boost::math::pareto_distribution<>(1, 0.5), "shape=0.5");
pareto_plotter2.add(boost::math::pareto_distribution<>(1, 1), "shape=1");
pareto_plotter2.add(boost::math::pareto_distribution<>(1, 2), "shape=2");
pareto_plotter2.plot("Pareto Distribution PDF (scale=1)", "pareto_pdf2.svg");
distribution_plotter<boost::math::rayleigh_distribution<> >
rayleigh_plotter;
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(0.5), "σ=0.5");
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(1), "σ=1");
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(2), "σ=2");
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(4), "σ=4");
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(10), "σ=10");
rayleigh_plotter.plot("Rayleigh Distribution PDF", "rayleigh_pdf.svg");
distribution_plotter<boost::math::rayleigh_distribution<> >
rayleigh_cdf_plotter(false);
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(0.5), "σ=0.5");
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(1), "σ=1");
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(2), "σ=2");
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(4), "σ=4");
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(10), "σ=10");
rayleigh_cdf_plotter.plot("Rayleigh Distribution CDF", "rayleigh_cdf.svg");
distribution_plotter<boost::math::skew_normal_distribution<> >
skew_normal_plotter;
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,0), "{0,1,0}");
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,1), "{0,1,1}");
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,4), "{0,1,4}");
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,20), "{0,1,20}");
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,-2), "{0,1,-2}");
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(-2,0.5,-1), "{-2,0.5,-1}");
skew_normal_plotter.plot("Skew Normal Distribution PDF", "skew_normal_pdf.svg");
distribution_plotter<boost::math::skew_normal_distribution<> >
skew_normal_cdf_plotter(false);
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,0), "{0,1,0}");
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,1), "{0,1,1}");
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,4), "{0,1,4}");
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,20), "{0,1,20}");
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,-2), "{0,1,-2}");
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(-2,0.5,-1), "{-2,0.5,-1}");
skew_normal_cdf_plotter.plot("Skew Normal Distribution CDF", "skew_normal_cdf.svg");
distribution_plotter<boost::math::triangular_distribution<> >
triangular_plotter;
triangular_plotter.add(boost::math::triangular_distribution<>(-1,0,1), "{-1,0,1}");
triangular_plotter.add(boost::math::triangular_distribution<>(0,1,1), "{0,1,1}");
triangular_plotter.add(boost::math::triangular_distribution<>(0,1,3), "{0,1,3}");
triangular_plotter.add(boost::math::triangular_distribution<>(0,0.5,1), "{0,0.5,1}");
triangular_plotter.add(boost::math::triangular_distribution<>(-2,0,3), "{-2,0,3}");
triangular_plotter.plot("Triangular Distribution PDF", "triangular_pdf.svg");
distribution_plotter<boost::math::triangular_distribution<> >
triangular_cdf_plotter(false);
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(-1,0,1), "{-1,0,1}");
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,1,1), "{0,1,1}");
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,1,3), "{0,1,3}");
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,0.5,1), "{0,0.5,1}");
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(-2,0,3), "{-2,0,3}");
triangular_cdf_plotter.plot("Triangular Distribution CDF", "triangular_cdf.svg");
distribution_plotter<boost::math::students_t_distribution<> >
students_t_plotter;
students_t_plotter.add(boost::math::students_t_distribution<>(1), "v=1");
students_t_plotter.add(boost::math::students_t_distribution<>(5), "v=5");
students_t_plotter.add(boost::math::students_t_distribution<>(30), "v=30");
students_t_plotter.plot("Students T Distribution PDF", "students_t_pdf.svg");
distribution_plotter<boost::math::weibull_distribution<> >
weibull_plotter;
weibull_plotter.add(boost::math::weibull_distribution<>(0.75), "shape=0.75");
weibull_plotter.add(boost::math::weibull_distribution<>(1), "shape=1");
weibull_plotter.add(boost::math::weibull_distribution<>(5), "shape=5");
weibull_plotter.add(boost::math::weibull_distribution<>(10), "shape=10");
weibull_plotter.plot("Weibull Distribution PDF (scale=1)", "weibull_pdf1.svg");
distribution_plotter<boost::math::weibull_distribution<> >
weibull_plotter2;
weibull_plotter2.add(boost::math::weibull_distribution<>(3, 0.5), "scale=0.5");
weibull_plotter2.add(boost::math::weibull_distribution<>(3, 1), "scale=1");
weibull_plotter2.add(boost::math::weibull_distribution<>(3, 2), "scale=2");
weibull_plotter2.plot("Weibull Distribution PDF (shape=3)", "weibull_pdf2.svg");
distribution_plotter<boost::math::uniform_distribution<> >
uniform_plotter;
uniform_plotter.add(boost::math::uniform_distribution<>(0, 1), "{0,1}");
uniform_plotter.add(boost::math::uniform_distribution<>(0, 3), "{0,3}");
uniform_plotter.add(boost::math::uniform_distribution<>(-2, 3), "{-2,3}");
uniform_plotter.add(boost::math::uniform_distribution<>(-1, 1), "{-1,1}");
uniform_plotter.plot("Uniform Distribution PDF", "uniform_pdf.svg");
distribution_plotter<boost::math::uniform_distribution<> >
uniform_cdf_plotter(false);
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(0, 1), "{0,1}");
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(0, 3), "{0,3}");
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(-2, 3), "{-2,3}");
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(-1, 1), "{-1,1}");
uniform_cdf_plotter.plot("Uniform Distribution CDF", "uniform_cdf.svg");
distribution_plotter<boost::math::bernoulli_distribution<> >
bernoulli_plotter;
bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.25), "p=0.25");
bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.5), "p=0.5");
bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.75), "p=0.75");
bernoulli_plotter.plot("Bernoulli Distribution PDF", "bernoulli_pdf.svg");
distribution_plotter<boost::math::bernoulli_distribution<> >
bernoulli_cdf_plotter(false);
bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.25), "p=0.25");
bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.5), "p=0.5");
bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.75), "p=0.75");
bernoulli_cdf_plotter.plot("Bernoulli Distribution CDF", "bernoulli_cdf.svg");
distribution_plotter<boost::math::binomial_distribution<> >
binomial_plotter;
binomial_plotter.add(boost::math::binomial_distribution<>(5, 0.5), "n=5 p=0.5");
binomial_plotter.add(boost::math::binomial_distribution<>(20, 0.5), "n=20 p=0.5");
binomial_plotter.add(boost::math::binomial_distribution<>(50, 0.5), "n=50 p=0.5");
binomial_plotter.plot("Binomial Distribution PDF", "binomial_pdf_1.svg");
distribution_plotter<boost::math::binomial_distribution<> >
binomial_plotter2;
binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.1), "n=20 p=0.1");
binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.5), "n=20 p=0.5");
binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.9), "n=20 p=0.9");
binomial_plotter2.plot("Binomial Distribution PDF", "binomial_pdf_2.svg");
distribution_plotter<boost::math::negative_binomial_distribution<> >
negative_binomial_plotter;
negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.25), "n=20 p=0.25");
negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.5), "n=20 p=0.5");
negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.75), "n=20 p=0.75");
negative_binomial_plotter.plot("Negative Binomial Distribution PDF", "negative_binomial_pdf_1.svg");
distribution_plotter<boost::math::negative_binomial_distribution<> >
negative_binomial_plotter2;
negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(10, 0.5), "n=10 p=0.5");
negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(20, 0.5), "n=20 p=0.5");
negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(70, 0.5), "n=70 p=0.5");
negative_binomial_plotter2.plot("Negative Binomial Distribution PDF", "negative_binomial_pdf_2.svg");
distribution_plotter<boost::math::poisson_distribution<> >
poisson_plotter;
poisson_plotter.add(boost::math::poisson_distribution<>(5), "λ=5");
poisson_plotter.add(boost::math::poisson_distribution<>(10), "λ=10");
poisson_plotter.add(boost::math::poisson_distribution<>(20), "λ=20");
poisson_plotter.plot("Poisson Distribution PDF", "poisson_pdf_1.svg");
distribution_plotter<boost::math::hypergeometric_distribution<> >
hypergeometric_plotter;
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 50, 500), "N=500, r=50, n=30");
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 100, 500), "N=500, r=100, n=30");
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 250, 500), "N=500, r=250, n=30");
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 400, 500), "N=500, r=400, n=30");
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 450, 500), "N=500, r=450, n=30");
hypergeometric_plotter.plot("Hypergeometric Distribution PDF", "hypergeometric_pdf_1.svg");
distribution_plotter<boost::math::hypergeometric_distribution<> >
hypergeometric_plotter2;
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(50, 50, 500), "N=500, r=50, n=50");
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(100, 50, 500), "N=500, r=50, n=100");
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(250, 50, 500), "N=500, r=50, n=250");
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(400, 50, 500), "N=500, r=50, n=400");
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(450, 50, 500), "N=500, r=50, n=450");
hypergeometric_plotter2.plot("Hypergeometric Distribution PDF", "hypergeometric_pdf_2.svg");
}
catch (std::exception ex)
{
std::cout << ex.what() << std::endl;
}
/* these graphs for hyperexponential distribution not used.
distribution_plotter<boost::math::hyperexponential_distribution<> >
hyperexponential_plotter;
{
const double probs1_1[] = {1.0};
const double rates1_1[] = {1.0};
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs1_1,rates1_1), "α=(1.0), λ=(1.0)");
const double probs2_1[] = {0.1,0.9};
const double rates2_1[] = {0.5,1.5};
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs2_1,rates2_1), "α=(0.1,0.9), λ=(0.5,1.5)");
const double probs2_2[] = {0.9,0.1};
const double rates2_2[] = {0.5,1.5};
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs2_2,rates2_2), "α=(0.9,0.1), λ=(0.5,1.5)");
const double probs3_1[] = {0.2,0.3,0.5};
const double rates3_1[] = {0.5,1.0,1.5};
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs3_1,rates3_1), "α=(0.2,0.3,0.5), λ=(0.5,1.0,1.5)");
const double probs3_2[] = {0.5,0.3,0.2};
const double rates3_2[] = {0.5,1.0,1.5};
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs3_1,rates3_1), "α=(0.5,0.3,0.2), λ=(0.5,1.0,1.5)");
}
hyperexponential_plotter.plot("Hyperexponential Distribution PDF", "hyperexponential_pdf.svg");
distribution_plotter<boost::math::hyperexponential_distribution<> >
hyperexponential_plotter2;
{
const double rates[] = {0.5,1.5};
const double probs1[] = {0.1,0.9};
hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs1,rates), "α=(0.1,0.9), λ=(0.5,1.5)");
const double probs2[] = {0.6,0.4};
hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs2,rates), "α=(0.6,0.4), λ=(0.5,1.5)");
const double probs3[] = {0.9,0.1};
hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs3,rates), "α=(0.9,0.1), λ=(0.5,1.5)");
}
hyperexponential_plotter2.plot("Hyperexponential Distribution PDF (Different Probabilities, Same Rates)", "hyperexponential_pdf_samerate.svg");
distribution_plotter<boost::math::hyperexponential_distribution<> >
hyperexponential_plotter3;
{
const double probs1[] = {1.0};
const double rates1[] = {2.0};
hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs1,rates1), "α=(1.0), λ=(2.0)");
const double probs2[] = {0.5,0.5};
const double rates2[] = {0.3,1.5};
hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs2,rates2), "α=(0.5,0.5), λ=(0.3,1.5)");
const double probs3[] = {1.0/3.0,1.0/3.0,1.0/3.0};
const double rates3[] = {0.2,1.5,3.0};
hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs2,rates2), "α=(1.0/3.0,1.0/3.0,1.0/3.0), λ=(0.2,1.5,3.0)");
}
hyperexponential_plotter3.plot("Hyperexponential Distribution PDF (Different Number of Phases, Same Mean)", "hyperexponential_pdf_samemean.svg");
*/
} // int main()
|