summaryrefslogtreecommitdiff
path: root/libs/math/doc/html/math_toolkit/dist_ref/dists/arcine_dist.html
blob: 21f27354d0a5c5c6122622403ef5788c4dd09412 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Arcsine Distribution</title>
<link rel="stylesheet" href="../../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
<link rel="home" href="../../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../dists.html" title="Distributions">
<link rel="prev" href="../dists.html" title="Distributions">
<link rel="next" href="bernoulli_dist.html" title="Bernoulli Distribution">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../dists.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="bernoulli_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="math_toolkit.dist_ref.dists.arcine_dist"></a><a class="link" href="arcine_dist.html" title="Arcsine Distribution">Arcsine Distribution</a>
</h4></div></div></div>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">arcsine</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>

 <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span> <span class="special">=</span> <span class="keyword">double</span><span class="special">,</span>
           <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a>   <span class="special">=</span> <a class="link" href="../../pol_ref/pol_ref_ref.html" title="Policy Class Reference">policies::policy&lt;&gt;</a> <span class="special">&gt;</span>
<span class="keyword">class</span> <span class="identifier">arcsine_distribution</span><span class="special">;</span>

<span class="keyword">typedef</span> <span class="identifier">arcsine_distribution</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">arcsine</span><span class="special">;</span> <span class="comment">// double precision standard arcsine distribution [0,1].</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="keyword">class</span> <span class="identifier">arcsine_distribution</span>
<span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
   <span class="keyword">typedef</span> <span class="identifier">RealType</span>  <span class="identifier">value_type</span><span class="special">;</span>
   <span class="keyword">typedef</span> <span class="identifier">Policy</span>    <span class="identifier">policy_type</span><span class="special">;</span>

   <span class="comment">// Constructor from two range parameters, x_min and x_max:</span>
   <span class="identifier">arcsine_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">x_min</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">x_max</span><span class="special">);</span>

   <span class="comment">// Range Parameter accessors:</span>
   <span class="identifier">RealType</span> <span class="identifier">x_min</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
   <span class="identifier">RealType</span> <span class="identifier">x_max</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
<span class="special">};</span>
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<p>
          The class type <code class="computeroutput"><span class="identifier">arcsine_distribution</span></code>
          represents an <a href="http://en.wikipedia.org/wiki/arcsine_distribution" target="_top">arcsine</a>
          <a href="http://en.wikipedia.org/wiki/Probability_distribution" target="_top">probability
          distribution function</a>. The arcsine distribution is named because
          its CDF uses the inverse sin<sup>-1</sup> or arcsine.
        </p>
<p>
          This is implemented as a generalized version with support from <span class="emphasis"><em>x_min</em></span>
          to <span class="emphasis"><em>x_max</em></span> providing the 'standard arcsine distribution'
          as default with <span class="emphasis"><em>x_min = 0</em></span> and <span class="emphasis"><em>x_max = 1</em></span>.
          (A few make other choices for 'standard').
        </p>
<p>
          The arcsine distribution is generalized to include any bounded support
          <span class="emphasis"><em>a &lt;= x &lt;= b</em></span> by <a href="http://reference.wolfram.com/language/ref/ArcSinDistribution.html" target="_top">Wolfram</a>
          and <a href="http://en.wikipedia.org/wiki/arcsine_distribution" target="_top">Wikipedia</a>,
          but also using <span class="emphasis"><em>location</em></span> and <span class="emphasis"><em>scale</em></span>
          parameters by <a href="http://www.math.uah.edu/stat/index.html" target="_top">Virtual
          Laboratories in Probability and Statistics</a> <a href="http://www.math.uah.edu/stat/special/Arcsine.html" target="_top">Arcsine
          distribution</a>. The end-point version is simpler and more obvious,
          so we implement that. If desired, <a href="http://en.wikipedia.org/wiki/arcsine_distribution" target="_top">this</a>
          outlines how the <a class="link" href="beta_dist.html" title="Beta Distribution">Beta
          Distribution</a> can be used to add a shape factor.
        </p>
<p>
          The <a href="http://en.wikipedia.org/wiki/Probability_density_function" target="_top">probability
          density function PDF</a> for the <a href="http://en.wikipedia.org/wiki/arcsine_distribution" target="_top">arcsine
          distribution</a> defined on the interval [<span class="emphasis"><em>x_min, x_max</em></span>]
          is given by:
        </p>
<p>
          &#8199;  &#8199; f(x; x_min, x_max) = 1 /(&#960;&#8901;&#8730;((x - x_min)&#8901;(x_max - x))
        </p>
<p>
          For example, <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>
          arcsine distribution, from input of
        </p>
<pre class="programlisting"><span class="identifier">N</span><span class="special">[</span><span class="identifier">PDF</span><span class="special">[</span><span class="identifier">arcsinedistribution</span><span class="special">[</span><span class="number">0</span><span class="special">,</span> <span class="number">1</span><span class="special">],</span> <span class="number">0.5</span><span class="special">],</span> <span class="number">50</span><span class="special">]</span>
</pre>
<p>
          computes the PDF value
        </p>
<pre class="programlisting"><span class="number">0.63661977236758134307553505349005744813783858296183</span>
</pre>
<p>
          The Probability Density Functions (PDF) of generalized arcsine distributions
          are symmetric U-shaped curves, centered on <span class="emphasis"><em>(x_max - x_min)/2</em></span>,
          highest (infinite) near the two extrema, and quite flat over the central
          region.
        </p>
<p>
          If random variate <span class="emphasis"><em>x</em></span> is <span class="emphasis"><em>x_min</em></span>
          or <span class="emphasis"><em>x_max</em></span>, then the PDF is infinity. If random variate
          <span class="emphasis"><em>x</em></span> is <span class="emphasis"><em>x_min</em></span> then the CDF is zero.
          If random variate <span class="emphasis"><em>x</em></span> is <span class="emphasis"><em>x_max</em></span>
          then the CDF is unity.
        </p>
<p>
          The 'Standard' (0, 1) arcsine distribution is shown in blue and some generalized
          examples with other <span class="emphasis"><em>x</em></span> ranges.
        </p>
<p>
          <span class="inlinemediaobject"><img src="../../../../graphs/arcsine_pdf.svg" align="middle"></span>
        </p>
<p>
          The Cumulative Distribution Function CDF is defined as
        </p>
<p>
          &#8199;   &#8199;  F(x) = 2&#8901;arcsin(&#8730;((x-x_min)/(x_max - x))) / &#960;
        </p>
<p>
          <span class="inlinemediaobject"><img src="../../../../graphs/arcsine_cdf.svg" align="middle"></span>
        </p>
<h6>
<a name="math_toolkit.dist_ref.dists.arcine_dist.h0"></a>
          <span class="phrase"><a name="math_toolkit.dist_ref.dists.arcine_dist.constructor"></a></span><a class="link" href="arcine_dist.html#math_toolkit.dist_ref.dists.arcine_dist.constructor">Constructor</a>
        </h6>
<pre class="programlisting"><span class="identifier">arcsine_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">x_min</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">x_max</span><span class="special">);</span>
</pre>
<p>
          constructs an arcsine distribution with range parameters <span class="emphasis"><em>x_min</em></span>
          and <span class="emphasis"><em>x_max</em></span>.
        </p>
<p>
          Requires <span class="emphasis"><em>x_min &lt; x_max</em></span>, otherwise <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
          is called.
        </p>
<p>
          For example:
        </p>
<pre class="programlisting"><span class="identifier">arcsine_distribution</span><span class="special">&lt;&gt;</span> <span class="identifier">myarcsine</span><span class="special">(-</span><span class="number">2</span><span class="special">,</span> <span class="number">4</span><span class="special">);</span>
</pre>
<p>
          constructs an arcsine distribution with <span class="emphasis"><em>x_min = -2</em></span>
          and <span class="emphasis"><em>x_max = 4</em></span>.
        </p>
<p>
          Default values of <span class="emphasis"><em>x_min = 0</em></span> and <span class="emphasis"><em>x_max =
          1</em></span> and a <code class="computeroutput"> <span class="keyword">typedef</span> <span class="identifier">arcsine_distribution</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">arcsine</span><span class="special">;</span></code>
          mean that
        </p>
<pre class="programlisting"><span class="identifier">arcsine</span> <span class="identifier">as</span><span class="special">;</span>
</pre>
<p>
          constructs a 'Standard 01' arcsine distribution.
        </p>
<h6>
<a name="math_toolkit.dist_ref.dists.arcine_dist.h1"></a>
          <span class="phrase"><a name="math_toolkit.dist_ref.dists.arcine_dist.parameter_accessors"></a></span><a class="link" href="arcine_dist.html#math_toolkit.dist_ref.dists.arcine_dist.parameter_accessors">Parameter
          Accessors</a>
        </h6>
<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">x_min</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
<span class="identifier">RealType</span> <span class="identifier">x_max</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
</pre>
<p>
          Return the parameter <span class="emphasis"><em>x_min</em></span> or <span class="emphasis"><em>x_max</em></span>
          from which this distribution was constructed.
        </p>
<p>
          So, for example:
        </p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">arcsine_distribution</span><span class="special">;</span>

<span class="identifier">arcsine_distribution</span><span class="special">&lt;&gt;</span> <span class="identifier">as</span><span class="special">(</span><span class="number">2</span><span class="special">,</span> <span class="number">5</span><span class="special">);</span> <span class="comment">// Cconstructs a double arcsine distribution.</span>
<span class="identifier">assert</span><span class="special">(</span><span class="identifier">as</span><span class="special">.</span><span class="identifier">x_min</span><span class="special">()</span> <span class="special">==</span> <span class="number">2.</span><span class="special">);</span>  <span class="comment">// as.x_min() returns 2.</span>
<span class="identifier">assert</span><span class="special">(</span><span class="identifier">as</span><span class="special">.</span><span class="identifier">x_max</span><span class="special">()</span> <span class="special">==</span> <span class="number">5.</span><span class="special">);</span>   <span class="comment">// as.x_max()  returns 5.</span>
</pre>
<h5>
<a name="math_toolkit.dist_ref.dists.arcine_dist.h2"></a>
          <span class="phrase"><a name="math_toolkit.dist_ref.dists.arcine_dist.non_member_accessor_functions"></a></span><a class="link" href="arcine_dist.html#math_toolkit.dist_ref.dists.arcine_dist.non_member_accessor_functions">Non-member
          Accessor Functions</a>
        </h5>
<p>
          All the <a class="link" href="../nmp.html" title="Non-Member Properties">usual non-member accessor
          functions</a> that are generic to all distributions are supported:
          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution Function</a>,
          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>,
          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>,
          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.median">median</a>,
          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>,
          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>,
          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>,
          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.range">range</a> and <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
        </p>
<p>
          The formulae for calculating these are shown in the table below, and at
          <a href="http://mathworld.wolfram.com/arcsineDistribution.html" target="_top">Wolfram
          Mathworld</a>.
        </p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
            There are always <span class="bold"><strong>two</strong></span> values for the
            <span class="bold"><strong>mode</strong></span>, at <span class="emphasis"><em>x_min</em></span>
            and at <span class="emphasis"><em>x_max</em></span>, default 0 and 1, so instead we raise
            the exception <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
            At these extrema, the PDFs are infinite, and the CDFs zero or unity.
          </p></td></tr>
</table></div>
<h5>
<a name="math_toolkit.dist_ref.dists.arcine_dist.h3"></a>
          <span class="phrase"><a name="math_toolkit.dist_ref.dists.arcine_dist.applications"></a></span><a class="link" href="arcine_dist.html#math_toolkit.dist_ref.dists.arcine_dist.applications">Applications</a>
        </h5>
<p>
          The arcsine distribution is useful to describe <a href="http://en.wikipedia.org/wiki/Random_walk" target="_top">Random
          walks</a>, (including drunken walks) <a href="http://en.wikipedia.org/wiki/Brownian_motion" target="_top">Brownian
          motion</a>, <a href="http://en.wikipedia.org/wiki/Wiener_process" target="_top">Weiner
          processes</a>, <a href="http://en.wikipedia.org/wiki/Bernoulli_trial" target="_top">Bernoulli
          trials</a>, and their appplication to solve stock market and other
          <a href="http://en.wikipedia.org/wiki/Gambler%27s_ruin" target="_top">ruinous gambling
          games</a>.
        </p>
<p>
          The random variate <span class="emphasis"><em>x</em></span> is constrained to <span class="emphasis"><em>x_min</em></span>
          and <span class="emphasis"><em>x_max</em></span>, (for our 'standard' distribution, 0 and
          1), and is usually some fraction. For any other <span class="emphasis"><em>x_min</em></span>
          and <span class="emphasis"><em>x_max</em></span> a fraction can be obtained from <span class="emphasis"><em>x</em></span>
          using
        </p>
<p>
          &#8198; fraction = (x - x_min) / (x_max - x_min)
        </p>
<p>
          The simplest example is tossing heads and tails with a fair coin and modelling
          the risk of losing, or winning. Walkers (molecules, drunks...) moving left
          or right of a centre line are another common example.
        </p>
<p>
          The random variate <span class="emphasis"><em>x</em></span> is the fraction of time spent
          on the 'winning' side. If half the time is spent on the 'winning' side
          (and so the other half on the 'losing' side) then <span class="emphasis"><em>x = 1/2</em></span>.
        </p>
<p>
          For large numbers of tosses, this is modelled by the (standard [0,1]) arcsine
          distribution, and the PDF can be calculated thus:
        </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">pdf</span><span class="special">(</span><span class="identifier">as</span><span class="special">,</span> <span class="number">1.</span> <span class="special">/</span> <span class="number">2</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// 0.637</span>
<span class="comment">// pdf has a minimum at x = 0.5</span>
</pre>
<p>
          From the plot of PDF, it is clear that <span class="emphasis"><em>x</em></span> = &#189; is the
          <span class="bold"><strong>minimum</strong></span> of the curve, so this is the
          <span class="bold"><strong>least likely</strong></span> scenario. (This is highly
          counter-intuitive, considering that fair tosses must <span class="bold"><strong>eventually</strong></span>
          become equal. It turns out that <span class="emphasis"><em>eventually</em></span> is not
          just very long, but <span class="bold"><strong>infinite</strong></span>!).
        </p>
<p>
          The <span class="bold"><strong>most likely</strong></span> scenarios are towards
          the extrema where <span class="emphasis"><em>x</em></span> = 0 or <span class="emphasis"><em>x</em></span>
          = 1.
        </p>
<p>
          If fraction of time on the left is a &#188;, it is only slightly more likely
          because the curve is quite flat bottomed.
        </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">pdf</span><span class="special">(</span><span class="identifier">as</span><span class="special">,</span> <span class="number">1.</span> <span class="special">/</span> <span class="number">4</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// 0.735</span>
</pre>
<p>
          If we consider fair coin-tossing games being played for 100 days (hypothetically
          continuously to be 'at-limit') the person winning after day 5 will not
          change in fraction 0.144 of the cases.
        </p>
<p>
          We can easily compute this setting <span class="emphasis"><em>x</em></span> = 5./100 = 0.05
        </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">as</span><span class="special">,</span> <span class="number">0.05</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// 0.144</span>
</pre>
<p>
          Similarly, we can compute from a fraction of 0.05 /2 = 0.025 (halved because
          we are considering both winners and losers) corresponding to 1 - 0.025
          or 97.5% of the gamblers, (walkers, particles...) on the <span class="bold"><strong>same
          side</strong></span> of the origin
        </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="number">2</span> <span class="special">*</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">as</span><span class="special">,</span> <span class="number">1</span> <span class="special">-</span> <span class="number">0.975</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// 0.202</span>
</pre>
<p>
          (use of the complement gives a bit more clarity, and avoids potential loss
          of accuracy when <span class="emphasis"><em>x</em></span> is close to unity, see <a class="link" href="../../stat_tut/overview/complements.html#why_complements">why
          complements?</a>).
        </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="number">2</span> <span class="special">*</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">as</span><span class="special">,</span> <span class="number">0.975</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// 0.202</span>
</pre>
<p>
          or we can reverse the calculation by assuming a fraction of time on one
          side, say fraction 0.2,
        </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">as</span><span class="special">,</span> <span class="number">1</span> <span class="special">-</span> <span class="number">0.2</span> <span class="special">/</span> <span class="number">2</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">//  0.976</span>

<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">as</span><span class="special">,</span> <span class="number">0.2</span> <span class="special">/</span> <span class="number">2</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// 0.976</span>
</pre>
<p>
          <span class="bold"><strong>Summary</strong></span>: Every time we toss, the odds
          are equal, so on average we have the same change of winning and losing.
        </p>
<p>
          But this is <span class="bold"><strong>not true</strong></span> for an an individual
          game where one will be <span class="bold"><strong>mostly in a bad or good patch</strong></span>.
        </p>
<p>
          This is quite counter-intuitive to most people, but the mathematics is
          clear, and gamblers continue to provide proof.
        </p>
<p>
          <span class="bold"><strong>Moral</strong></span>: if you in a losing patch, leave
          the game. (Because the odds to recover to a good patch are poor).
        </p>
<p>
          <span class="bold"><strong>Corollary</strong></span>: Quit while you are ahead?
        </p>
<p>
          A working example is at <a href="../../../../../example/arcsine_example.cpp" target="_top">arcsine_example.cpp</a>
          including sample output .
        </p>
<h5>
<a name="math_toolkit.dist_ref.dists.arcine_dist.h4"></a>
          <span class="phrase"><a name="math_toolkit.dist_ref.dists.arcine_dist.related_distributions"></a></span><a class="link" href="arcine_dist.html#math_toolkit.dist_ref.dists.arcine_dist.related_distributions">Related
          distributions</a>
        </h5>
<p>
          The arcsine distribution with <span class="emphasis"><em>x_min = 0</em></span> and <span class="emphasis"><em>x_max
          = 1</em></span> is special case of the <a class="link" href="beta_dist.html" title="Beta Distribution">Beta
          Distribution</a> with &#945; = 1/2 and &#946; = 1/2.
        </p>
<h5>
<a name="math_toolkit.dist_ref.dists.arcine_dist.h5"></a>
          <span class="phrase"><a name="math_toolkit.dist_ref.dists.arcine_dist.accuracy"></a></span><a class="link" href="arcine_dist.html#math_toolkit.dist_ref.dists.arcine_dist.accuracy">Accuracy</a>
        </h5>
<p>
          This distribution is implemented using sqrt, sine, cos and arc sine and
          cos trigonometric functions which are normally accurate to a few <a href="http://en.wikipedia.org/wiki/Machine_epsilon" target="_top">machine epsilon</a>.
          But all values suffer from <a href="http://en.wikipedia.org/wiki/Loss_of_significance" target="_top">loss
          of significance or cancellation error</a> for values of <span class="emphasis"><em>x</em></span>
          close to <span class="emphasis"><em>x_max</em></span>. For example, for a standard [0, 1]
          arcsine distribution <span class="emphasis"><em>as</em></span>, the pdf is symmetric about
          random variate <span class="emphasis"><em>x = 0.5</em></span> so that one would expect <code class="computeroutput"><span class="identifier">pdf</span><span class="special">(</span><span class="identifier">as</span><span class="special">,</span> <span class="number">0.01</span><span class="special">)</span> <span class="special">==</span>
          <span class="identifier">pdf</span><span class="special">(</span><span class="identifier">as</span><span class="special">,</span> <span class="number">0.99</span><span class="special">)</span></code>. But
          as <span class="emphasis"><em>x</em></span> nears unity, there is increasing <a href="http://en.wikipedia.org/wiki/Loss_of_significance" target="_top">loss
          of significance</a>. To counteract this, the complement versions of
          CDF and quantile are implemented with alternative expressions using <span class="emphasis"><em>cos<sup>-1</sup></em></span>
          instead of <span class="emphasis"><em>sin<sup>-1</sup></em></span>. Users should see <a class="link" href="../../stat_tut/overview/complements.html#why_complements">why
          complements?</a> for guidance on when to avoid loss of accuracy by using
          complements.
        </p>
<h5>
<a name="math_toolkit.dist_ref.dists.arcine_dist.h6"></a>
          <span class="phrase"><a name="math_toolkit.dist_ref.dists.arcine_dist.testing"></a></span><a class="link" href="arcine_dist.html#math_toolkit.dist_ref.dists.arcine_dist.testing">Testing</a>
        </h5>
<p>
          The results were tested against a few accurate spot values computed by
          <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>, for example:
        </p>
<pre class="programlisting"><span class="identifier">N</span><span class="special">[</span><span class="identifier">PDF</span><span class="special">[</span><span class="identifier">arcsinedistribution</span><span class="special">[</span><span class="number">0</span><span class="special">,</span> <span class="number">1</span><span class="special">],</span> <span class="number">0.5</span><span class="special">],</span> <span class="number">50</span><span class="special">]</span>
  <span class="number">0.63661977236758134307553505349005744813783858296183</span>
</pre>
<h5>
<a name="math_toolkit.dist_ref.dists.arcine_dist.h7"></a>
          <span class="phrase"><a name="math_toolkit.dist_ref.dists.arcine_dist.implementation"></a></span><a class="link" href="arcine_dist.html#math_toolkit.dist_ref.dists.arcine_dist.implementation">Implementation</a>
        </h5>
<p>
          In the following table <span class="emphasis"><em>a</em></span> and <span class="emphasis"><em>b</em></span>
          are the parameters <span class="emphasis"><em>x_min</em></span> &#160; and <span class="emphasis"><em>x_max</em></span>,
          <span class="emphasis"><em>x</em></span> is the random variable, <span class="emphasis"><em>p</em></span> is
          the probability and its complement <span class="emphasis"><em>q = 1-p</em></span>.
        </p>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                  <p>
                    Function
                  </p>
                </th>
<th>
                  <p>
                    Implementation Notes
                  </p>
                </th>
</tr></thead>
<tbody>
<tr>
<td>
                  <p>
                    support
                  </p>
                </td>
<td>
                  <p>
                    x &#8712; [a, b], default x &#8712; [0, 1]
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    pdf
                  </p>
                </td>
<td>
                  <p>
                    f(x; a, b) = 1/(&#960;&#8901;&#8730;(x - a)&#8901;(b - x))
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    cdf
                  </p>
                </td>
<td>
                  <p>
                    F(x) = 2/&#960;&#8901;sin<sup>-1</sup>(&#8730;(x - a) / (b - a) )
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    cdf of complement
                  </p>
                </td>
<td>
                  <p>
                    2/(&#960;&#8901;cos<sup>-1</sup>(&#8730;(x - a) / (b - a)))
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    quantile
                  </p>
                </td>
<td>
                  <p>
                    -a&#8901;sin<sup>2</sup>(&#189;&#960;&#8901;p) + a + b&#8901;sin<sup>2</sup>(&#189;&#960;&#8901;p)
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    quantile from the complement
                  </p>
                </td>
<td>
                  <p>
                    -a&#8901;cos<sup>2</sup>(&#189;&#960;&#8901;p) + a + b&#8901;cos<sup>2</sup>(&#189;&#960;&#8901;q)
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    mean
                  </p>
                </td>
<td>
                  <p>
                    &#189;(a+b)
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    median
                  </p>
                </td>
<td>
                  <p>
                    &#189;(a+b)
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    mode
                  </p>
                </td>
<td>
                  <p>
                    x &#8712; [a, b], so raises domain_error (returning NaN).
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    variance
                  </p>
                </td>
<td>
                  <p>
                    (b - a)<sup>2</sup> / 8
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    skewness
                  </p>
                </td>
<td>
                  <p>
                    0
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    kurtosis excess
                  </p>
                </td>
<td>
                  <p>
                    -3/2
                  </p>
                </td>
</tr>
<tr>
<td>
                  <p>
                    kurtosis
                  </p>
                </td>
<td>
                  <p>
                    kurtosis_excess + 3
                  </p>
                </td>
</tr>
</tbody>
</table></div>
<p>
          The quantile was calculated using an expression obtained by using <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a> to invert the
          formula for the CDF thus
        </p>
<pre class="programlisting"><span class="identifier">solve</span> <span class="special">[</span><span class="identifier">p</span> <span class="special">-</span> <span class="number">2</span><span class="special">/</span><span class="identifier">pi</span> <span class="identifier">sin</span><span class="special">^-</span><span class="number">1</span><span class="special">(</span><span class="identifier">sqrt</span><span class="special">((</span><span class="identifier">x</span><span class="special">-</span><span class="identifier">a</span><span class="special">)/(</span><span class="identifier">b</span><span class="special">-</span><span class="identifier">a</span><span class="special">)))</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">x</span><span class="special">]</span>
</pre>
<p>
          which was interpreted as
        </p>
<pre class="programlisting"><span class="identifier">Solve</span><span class="special">[</span><span class="identifier">p</span> <span class="special">-</span> <span class="special">(</span><span class="number">2</span> <span class="identifier">ArcSin</span><span class="special">[</span><span class="identifier">Sqrt</span><span class="special">[(-</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">x</span><span class="special">)/(-</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span><span class="special">)]])/</span><span class="identifier">Pi</span> <span class="special">==</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">MaxExtraConditions</span> <span class="special">-&gt;</span> <span class="identifier">Automatic</span><span class="special">]</span>
</pre>
<p>
          and produced the resulting expression
        </p>
<pre class="programlisting"><span class="identifier">x</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">a</span> <span class="identifier">sin</span><span class="special">^</span><span class="number">2</span><span class="special">((</span><span class="identifier">pi</span> <span class="identifier">p</span><span class="special">)/</span><span class="number">2</span><span class="special">)+</span><span class="identifier">a</span><span class="special">+</span><span class="identifier">b</span> <span class="identifier">sin</span><span class="special">^</span><span class="number">2</span><span class="special">((</span><span class="identifier">pi</span> <span class="identifier">p</span><span class="special">)/</span><span class="number">2</span><span class="special">)</span>
</pre>
<p>
          Thanks to Wolfram for providing this facility.
        </p>
<h5>
<a name="math_toolkit.dist_ref.dists.arcine_dist.h8"></a>
          <span class="phrase"><a name="math_toolkit.dist_ref.dists.arcine_dist.references"></a></span><a class="link" href="arcine_dist.html#math_toolkit.dist_ref.dists.arcine_dist.references">References</a>
        </h5>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
              <a href="http://en.wikipedia.org/wiki/arcsine_distribution" target="_top">Wikipedia
              arcsine distribution</a>
            </li>
<li class="listitem">
              <a href="http://en.wikipedia.org/wiki/Beta_distribution" target="_top">Wikipedia
              Beta distribution</a>
            </li>
<li class="listitem">
              <a href="http://mathworld.wolfram.com/BetaDistribution.html" target="_top">Wolfram
              MathWorld</a>
            </li>
<li class="listitem">
              <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>
            </li>
</ul></div>
<h5>
<a name="math_toolkit.dist_ref.dists.arcine_dist.h9"></a>
          <span class="phrase"><a name="math_toolkit.dist_ref.dists.arcine_dist.sources"></a></span><a class="link" href="arcine_dist.html#math_toolkit.dist_ref.dists.arcine_dist.sources">Sources</a>
        </h5>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
              <a href="http://estebanmoro.org/2009/04/the-probability-of-going-through-a-bad-patch" target="_top">The
              probability of going through a bad patch</a> Esteban Moro's Blog.
            </li>
<li class="listitem">
              <a href="http://www.gotohaggstrom.com/What%20do%20schmucks%20and%20the%20arc%20sine%20law%20have%20in%20common.pdf" target="_top">What
              soschumcks and the arc sine have in common</a> Peter Haggstrom.
            </li>
<li class="listitem">
              <a href="http://www.math.uah.edu/stat/special/Arcsine.html" target="_top">arcsine
              distribution</a>.
            </li>
<li class="listitem">
              <a href="http://reference.wolfram.com/language/ref/ArcSinDistribution.html" target="_top">Wolfram
              reference arcsine examples</a>.
            </li>
<li class="listitem">
              <a href="http://www.math.harvard.edu/library/sternberg/slides/1180908.pdf" target="_top">Shlomo
              Sternberg slides</a>.
            </li>
</ul></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014 Nikhar Agrawal,
      Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
      Holin, Bruno Lalande, John Maddock, Johan R&#229;de, Gautam Sewani, Benjamin Sobotta,
      Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../dists.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="bernoulli_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>