summaryrefslogtreecommitdiff
path: root/libs/math/doc/html/math_toolkit/expint/expint_i.html
blob: 1513422ff84c75f42a21da637ef1bc6986457f09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Exponential Integral Ei</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../expint.html" title="Exponential Integrals">
<link rel="prev" href="expint_n.html" title="Exponential Integral En">
<link rel="next" href="../powers.html" title="Basic Functions">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="expint_n.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../expint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../powers.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.expint.expint_i"></a><a class="link" href="expint_i.html" title="Exponential Integral Ei">Exponential Integral Ei</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.expint.expint_i.h0"></a>
        <span class="phrase"><a name="math_toolkit.expint.expint_i.synopsis"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.synopsis">Synopsis</a>
      </h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">expint</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>

<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<p>
        The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
        type calculation rules</em></span></a>: the return type is <code class="computeroutput"><span class="keyword">double</span></code> if T is an integer type, and T otherwise.
      </p>
<p>
        The final <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
        be used to control the behaviour of the function: how it handles errors,
        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">policy
        documentation for more details</a>.
      </p>
<h5>
<a name="math_toolkit.expint.expint_i.h1"></a>
        <span class="phrase"><a name="math_toolkit.expint.expint_i.description"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.description">Description</a>
      </h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
        Returns the <a href="http://mathworld.wolfram.com/ExponentialIntegral.html" target="_top">exponential
        integral</a> of z:
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../equations/expint_i_1.svg"></span>
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../graphs/expint_i.svg" align="middle"></span>
      </p>
<h5>
<a name="math_toolkit.expint.expint_i.h2"></a>
        <span class="phrase"><a name="math_toolkit.expint.expint_i.accuracy"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.accuracy">Accuracy</a>
      </h5>
<p>
        The following table shows the peak errors (in units of epsilon) found on
        various platforms with various floating point types, along with comparisons
        to Cody's SPECFUN implementation and the <a href="http://www.gnu.org/software/gsl/" target="_top">GSL-1.9</a>
        library. Unless otherwise specified any floating point type that is narrower
        than the one shown will have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
        zero error</a>.
      </p>
<div class="table">
<a name="math_toolkit.expint.expint_i.errors_in_the_function_expint_z"></a><p class="title"><b>Table&#160;6.32.&#160;Errors In the Function expint(z)</b></p>
<div class="table-contents"><table class="table" summary="Errors In the Function expint(z)">
<colgroup>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                <p>
                  Significand Size
                </p>
              </th>
<th>
                <p>
                  Platform and Compiler
                </p>
              </th>
<th>
                <p>
                  Error
                </p>
              </th>
</tr></thead>
<tbody>
<tr>
<td>
                <p>
                  53
                </p>
              </td>
<td>
                <p>
                  Win32, Visual C++ 8
                </p>
              </td>
<td>
                <p>
                  Peak=2.4 Mean=0.6
                </p>
                <p>
                  GSL Peak=8.9 Mean=0.7
                </p>
                <p>
                  SPECFUN (Cody) Peak=2.5 Mean=0.6
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  64
                </p>
              </td>
<td>
                <p>
                  RedHat Linux IA_EM64, gcc-4.1
                </p>
              </td>
<td>
                <p>
                  Peak=5.1 Mean=0.8
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  64
                </p>
              </td>
<td>
                <p>
                  Redhat Linux IA64, gcc-4.1
                </p>
              </td>
<td>
                <p>
                  Peak=5.0 Mean=0.8
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  113
                </p>
              </td>
<td>
                <p>
                  HPUX IA64, aCC A.06.06
                </p>
              </td>
<td>
                <p>
                  Peak=1.9 Mean=0.63
                </p>
              </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
        It should be noted that all three libraries tested above offer sub-epsilon
        precision over most of their range.
      </p>
<p>
        GSL has the greatest difficulty near the positive root of En, while Cody's
        SPECFUN along with this implementation increase their error rates very slightly
        over the range [4,6].
      </p>
<h5>
<a name="math_toolkit.expint.expint_i.h3"></a>
        <span class="phrase"><a name="math_toolkit.expint.expint_i.testing"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.testing">Testing</a>
      </h5>
<p>
        The tests for these functions come in two parts: basic sanity checks use
        spot values calculated using <a href="http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=ExpIntegralEi" target="_top">Mathworld's
        online evaluator</a>, while accuracy checks use high-precision test values
        calculated at 1000-bit precision with <a href="http://shoup.net/ntl/doc/RR.txt" target="_top">NTL::RR</a>
        and this implementation. Note that the generic and type-specific versions
        of these functions use differing implementations internally, so this gives
        us reasonably independent test data. Using our test data to test other "known
        good" implementations also provides an additional sanity check.
      </p>
<h5>
<a name="math_toolkit.expint.expint_i.h4"></a>
        <span class="phrase"><a name="math_toolkit.expint.expint_i.implementation"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.implementation">Implementation</a>
      </h5>
<p>
        For x &lt; 0 this function just calls <a class="link" href="expint_n.html" title="Exponential Integral En">zeta</a>(1,
        -x): which in turn is implemented in terms of rational approximations when
        the type of x has 113 or fewer bits of precision.
      </p>
<p>
        For x &gt; 0 the generic version is implemented using the infinte series:
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../equations/expint_i_2.svg"></span>
      </p>
<p>
        However, when the precision of the argument type is known at compile time
        and is 113 bits or less, then rational approximations <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
        by JM</a> are used.
      </p>
<p>
        For 0 &lt; z &lt; 6 a root-preserving approximation of the form:
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../equations/expint_i_3.svg"></span>
      </p>
<p>
        is used, where z<sub>0</sub> is the positive root of the function, and R(z/3 - 1) is
        a minimax rational approximation rescaled so that it is evaluated over [-1,1].
        Note that while the rational approximation over [0,6] converges rapidly to
        the minimax solution it is rather ill-conditioned in practice. Cody and Thacher
        <a href="#ftn.math_toolkit.expint.expint_i.f0" class="footnote"><sup class="footnote"><a name="math_toolkit.expint.expint_i.f0"></a>[5]</sup></a> experienced the same issue and converted the polynomials into
        Chebeshev form to ensure stable computation. By experiment we found that
        the polynomials are just as stable in polynomial as Chebyshev form, <span class="emphasis"><em>provided</em></span>
        they are computed over the interval [-1,1].
      </p>
<p>
        Over the a series of intervals [a,b] and [b,INF] the rational approximation
        takes the form:
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../equations/expint_i_4.svg"></span>
      </p>
<p>
        where <span class="emphasis"><em>c</em></span> is a constant, and R(t) is a minimax solution
        optimised for low absolute error compared to <span class="emphasis"><em>c</em></span>. Variable
        <span class="emphasis"><em>t</em></span> is <code class="computeroutput"><span class="number">1</span><span class="special">/</span><span class="identifier">z</span></code> when the range in infinite and <code class="computeroutput"><span class="number">2</span><span class="identifier">z</span><span class="special">/(</span><span class="identifier">b</span><span class="special">-</span><span class="identifier">a</span><span class="special">)</span> <span class="special">-</span> <span class="special">(</span><span class="number">2</span><span class="identifier">a</span><span class="special">/(</span><span class="identifier">b</span><span class="special">-</span><span class="identifier">a</span><span class="special">)</span> <span class="special">+</span> <span class="number">1</span><span class="special">)</span></code> otherwise: this has the effect of scaling
        z to the interval [-1,1]. As before rational approximations over arbitrary
        intervals were found to be ill-conditioned: Cody and Thacher solved this
        issue by converting the polynomials to their J-Fraction equivalent. However,
        as long as the interval of evaluation was [-1,1] and the number of terms
        carefully chosen, it was found that the polynomials <span class="emphasis"><em>could</em></span>
        be evaluated to suitable precision: error rates are typically 2 to 3 epsilon
        which is comparible to the error rate that Cody and Thacher achieved using
        J-Fractions, but marginally more efficient given that fewer divisions are
        involved.
      </p>
<div class="footnotes">
<br><hr style="width:100; align:left;">
<div id="ftn.math_toolkit.expint.expint_i.f0" class="footnote"><p><a href="#math_toolkit.expint.expint_i.f0" class="para"><sup class="para">[5] </sup></a>
          W. J. Cody and H. C. Thacher, Jr., Rational Chebyshev approximations for
          the exponential integral E<sub>1</sub>(x), Math. Comp. 22 (1968), 641-649, and W.
          J. Cody and H. C. Thacher, Jr., Chebyshev approximations for the exponential
          integral Ei(x), Math. Comp. 23 (1969), 289-303.
        </p></div>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014 Nikhar Agrawal,
      Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
      Holin, Bruno Lalande, John Maddock, Johan R&#229;de, Gautam Sewani, Benjamin Sobotta,
      Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="expint_n.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../expint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../powers.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>