summaryrefslogtreecommitdiff
path: root/libs/math/doc/html/math_toolkit/sf_gamma/lgamma.html
blob: 5be633960942b6f8caf065e42277b8585a25ae03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Log Gamma</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../sf_gamma.html" title="Gamma Functions">
<link rel="prev" href="tgamma.html" title="Gamma">
<link rel="next" href="digamma.html" title="Digamma">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="tgamma.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_gamma.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="digamma.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.sf_gamma.lgamma"></a><a class="link" href="lgamma.html" title="Log Gamma">Log Gamma</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.sf_gamma.lgamma.h0"></a>
        <span class="phrase"><a name="math_toolkit.sf_gamma.lgamma.synopsis"></a></span><a class="link" href="lgamma.html#math_toolkit.sf_gamma.lgamma.synopsis">Synopsis</a>
      </h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">gamma</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">int</span><span class="special">*</span> <span class="identifier">sign</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">int</span><span class="special">*</span> <span class="identifier">sign</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>

<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<h5>
<a name="math_toolkit.sf_gamma.lgamma.h1"></a>
        <span class="phrase"><a name="math_toolkit.sf_gamma.lgamma.description"></a></span><a class="link" href="lgamma.html#math_toolkit.sf_gamma.lgamma.description">Description</a>
      </h5>
<p>
        The <a href="http://en.wikipedia.org/wiki/Gamma_function" target="_top">lgamma function</a>
        is defined by:
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../equations/lgamm1.svg"></span>
      </p>
<p>
        The second form of the function takes a pointer to an integer, which if non-null
        is set on output to the sign of tgamma(z).
      </p>
<p>
        The final <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
        be used to control the behaviour of the function: how it handles errors,
        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;14.&#160;Policies: Controlling Precision, Error Handling etc">policy
        documentation for more details</a>.
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../graphs/lgamma.svg" align="middle"></span>
      </p>
<p>
        There are effectively two versions of this function internally: a fully generic
        version that is slow, but reasonably accurate, and a much more efficient
        approximation that is used where the number of digits in the significand
        of T correspond to a certain <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos
        approximation</a>. In practice, any built-in floating-point type you will
        encounter has an appropriate <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos
        approximation</a> defined for it. It is also possible, given enough machine
        time, to generate further <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos approximation</a>'s
        using the program libs/math/tools/lanczos_generator.cpp.
      </p>
<p>
        The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
        type calculation rules</em></span></a>: the result is of type <code class="computeroutput"><span class="keyword">double</span></code> if T is an integer type, or type T
        otherwise.
      </p>
<h5>
<a name="math_toolkit.sf_gamma.lgamma.h2"></a>
        <span class="phrase"><a name="math_toolkit.sf_gamma.lgamma.accuracy"></a></span><a class="link" href="lgamma.html#math_toolkit.sf_gamma.lgamma.accuracy">Accuracy</a>
      </h5>
<p>
        The following table shows the peak errors (in units of epsilon) found on
        various platforms with various floating point types, along with comparisons
        to the <a href="http://www.gnu.org/software/gsl/" target="_top">GSL-1.9</a>, <a href="http://www.gnu.org/software/libc/" target="_top">GNU C Lib</a>, <a href="http://docs.hp.com/en/B9106-90010/index.html" target="_top">HP-UX
        C Library</a> and <a href="http://www.netlib.org/cephes/" target="_top">Cephes</a>
        libraries. Unless otherwise specified any floating point type that is narrower
        than the one shown will have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
        zero error</a>.
      </p>
<p>
        Note that while the relative errors near the positive roots of lgamma are
        very low, the lgamma function has an infinite number of irrational roots
        for negative arguments: very close to these negative roots only a low absolute
        error can be guaranteed.
      </p>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
                <p>
                  Significand Size
                </p>
              </th>
<th>
                <p>
                  Platform and Compiler
                </p>
              </th>
<th>
                <p>
                  Factorials and Half factorials
                </p>
              </th>
<th>
                <p>
                  Values Near Zero
                </p>
              </th>
<th>
                <p>
                  Values Near 1 or 2
                </p>
              </th>
<th>
                <p>
                  Values Near a Negative Pole
                </p>
              </th>
</tr></thead>
<tbody>
<tr>
<td>
                <p>
                  53
                </p>
              </td>
<td>
                <p>
                  Win32 Visual C++ 8
                </p>
              </td>
<td>
                <p>
                  Peak=0.88 Mean=0.14
                </p>
                <p>
                  (GSL=33) (<a href="http://www.netlib.org/cephes/" target="_top">Cephes</a>=1.5)
                </p>
              </td>
<td>
                <p>
                  Peak=0.96 Mean=0.46
                </p>
                <p>
                  (GSL=5.2) (<a href="http://www.netlib.org/cephes/" target="_top">Cephes</a>=1.1)
                </p>
              </td>
<td>
                <p>
                  Peak=0.86 Mean=0.46
                </p>
                <p>
                  (GSL=1168) (<a href="http://www.netlib.org/cephes/" target="_top">Cephes</a>~500000)
                </p>
              </td>
<td>
                <p>
                  Peak=4.2 Mean=1.3
                </p>
                <p>
                  (GSL=25) (<a href="http://www.netlib.org/cephes/" target="_top">Cephes</a>=1.6)
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  64
                </p>
              </td>
<td>
                <p>
                  Linux IA32 / GCC
                </p>
              </td>
<td>
                <p>
                  Peak=1.9 Mean=0.43
                </p>
                <p>
                  (<a href="http://www.gnu.org/software/libc/" target="_top">GNU C Lib</a>
                  Peak=1.7 Mean=0.49)
                </p>
              </td>
<td>
                <p>
                  Peak=1.4 Mean=0.57
                </p>
                <p>
                  (<a href="http://www.gnu.org/software/libc/" target="_top">GNU C Lib</a>
                  Peak= 0.96 Mean=0.54)
                </p>
              </td>
<td>
                <p>
                  Peak=0.86 Mean=0.35
                </p>
                <p>
                  (<a href="http://www.gnu.org/software/libc/" target="_top">GNU C Lib</a>
                  Peak=0.74 Mean=0.26)
                </p>
              </td>
<td>
                <p>
                  Peak=6.0 Mean=1.8
                </p>
                <p>
                  (<a href="http://www.gnu.org/software/libc/" target="_top">GNU C Lib</a>
                  Peak=3.0 Mean=0.86)
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  64
                </p>
              </td>
<td>
                <p>
                  Linux IA64 / GCC
                </p>
              </td>
<td>
                <p>
                  Peak=0.99 Mean=0.12
                </p>
                <p>
                  (<a href="http://www.gnu.org/software/libc/" target="_top">GNU C Lib</a>
                  Peak 0)
                </p>
              </td>
<td>
                <p>
                  Pek=1.2 Mean=0.6
                </p>
                <p>
                  (<a href="http://www.gnu.org/software/libc/" target="_top">GNU C Lib</a>
                  Peak 0)
                </p>
              </td>
<td>
                <p>
                  Peak=0.86 Mean=0.16
                </p>
                <p>
                  (<a href="http://www.gnu.org/software/libc/" target="_top">GNU C Lib</a>
                  Peak 0)
                </p>
              </td>
<td>
                <p>
                  Peak=2.3 Mean=0.69
                </p>
                <p>
                  (<a href="http://www.gnu.org/software/libc/" target="_top">GNU C Lib</a>
                  Peak 0)
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  113
                </p>
              </td>
<td>
                <p>
                  HPUX IA64, aCC A.06.06
                </p>
              </td>
<td>
                <p>
                  Peak=0.96 Mean=0.13
                </p>
                <p>
                  (<a href="http://docs.hp.com/en/B9106-90010/index.html" target="_top">HP-UX
                  C Library</a> Peak 0)
                </p>
              </td>
<td>
                <p>
                  Peak=0.99 Mean=0.53
                </p>
                <p>
                  (<a href="http://docs.hp.com/en/B9106-90010/index.html" target="_top">HP-UX
                  C Library</a> Peak 0)
                </p>
              </td>
<td>
                <p>
                  Peak=0.9 Mean=0.4
                </p>
                <p>
                  (<a href="http://docs.hp.com/en/B9106-90010/index.html" target="_top">HP-UX
                  C Library</a> Peak 0)
                </p>
              </td>
<td>
                <p>
                  Peak=3.0 Mean=0.9
                </p>
                <p>
                  (<a href="http://docs.hp.com/en/B9106-90010/index.html" target="_top">HP-UX
                  C Library</a> Peak 0)
                </p>
              </td>
</tr>
</tbody>
</table></div>
<h5>
<a name="math_toolkit.sf_gamma.lgamma.h3"></a>
        <span class="phrase"><a name="math_toolkit.sf_gamma.lgamma.testing"></a></span><a class="link" href="lgamma.html#math_toolkit.sf_gamma.lgamma.testing">Testing</a>
      </h5>
<p>
        The main tests for this function involve comparisons against the logs of
        the factorials which can be independently calculated to very high accuracy.
      </p>
<p>
        Random tests in key problem areas are also used.
      </p>
<h5>
<a name="math_toolkit.sf_gamma.lgamma.h4"></a>
        <span class="phrase"><a name="math_toolkit.sf_gamma.lgamma.implementation"></a></span><a class="link" href="lgamma.html#math_toolkit.sf_gamma.lgamma.implementation">Implementation</a>
      </h5>
<p>
        The generic version of this function is implemented using Sterling's approximation
        for large arguments:
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../equations/gamma6.svg"></span>
      </p>
<p>
        For small arguments, the logarithm of tgamma is used.
      </p>
<p>
        For negative <span class="emphasis"><em>z</em></span> the logarithm version of the reflection
        formula is used:
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../equations/lgamm3.svg"></span>
      </p>
<p>
        For types of known precision, the <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos
        approximation</a> is used, a traits class <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lanczos</span><span class="special">::</span><span class="identifier">lanczos_traits</span></code>
        maps type T to an appropriate approximation. The logarithmic version of the
        <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos approximation</a> is:
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../equations/lgamm4.svg"></span>
      </p>
<p>
        Where L<sub>e,g</sub> &#160; is the Lanczos sum, scaled by e<sup>g</sup>.
      </p>
<p>
        As before the reflection formula is used for <span class="emphasis"><em>z &lt; 0</em></span>.
      </p>
<p>
        When z is very near 1 or 2, then the logarithmic version of the <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos
        approximation</a> suffers very badly from cancellation error: indeed for
        values sufficiently close to 1 or 2, arbitrarily large relative errors can
        be obtained (even though the absolute error is tiny).
      </p>
<p>
        For types with up to 113 bits of precision (up to and including 128-bit long
        doubles), root-preserving rational approximations <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
        by JM</a> are used over the intervals [1,2] and [2,3]. Over the interval
        [2,3] the approximation form used is:
      </p>
<pre class="programlisting"><span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">z</span><span class="special">-</span><span class="number">2</span><span class="special">)(</span><span class="identifier">z</span><span class="special">+</span><span class="number">1</span><span class="special">)(</span><span class="identifier">Y</span> <span class="special">+</span> <span class="identifier">R</span><span class="special">(</span><span class="identifier">z</span><span class="special">-</span><span class="number">2</span><span class="special">));</span>
</pre>
<p>
        Where Y is a constant, and R(z-2) is the rational approximation: optimised
        so that it's absolute error is tiny compared to Y. In addition small values
        of z greater than 3 can handled by argument reduction using the recurrence
        relation:
      </p>
<pre class="programlisting"><span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">z</span><span class="special">+</span><span class="number">1</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
</pre>
<p>
        Over the interval [1,2] two approximations have to be used, one for small
        z uses:
      </p>
<pre class="programlisting"><span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">z</span><span class="special">-</span><span class="number">1</span><span class="special">)(</span><span class="identifier">z</span><span class="special">-</span><span class="number">2</span><span class="special">)(</span><span class="identifier">Y</span> <span class="special">+</span> <span class="identifier">R</span><span class="special">(</span><span class="identifier">z</span><span class="special">-</span><span class="number">1</span><span class="special">));</span>
</pre>
<p>
        Once again Y is a constant, and R(z-1) is optimised for low absolute error
        compared to Y. For z &gt; 1.5 the above form wouldn't converge to a minimax
        solution but this similar form does:
      </p>
<pre class="programlisting"><span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="special">(</span><span class="number">2</span><span class="special">-</span><span class="identifier">z</span><span class="special">)(</span><span class="number">1</span><span class="special">-</span><span class="identifier">z</span><span class="special">)(</span><span class="identifier">Y</span> <span class="special">+</span> <span class="identifier">R</span><span class="special">(</span><span class="number">2</span><span class="special">-</span><span class="identifier">z</span><span class="special">));</span>
</pre>
<p>
        Finally for z &lt; 1 the recurrence relation can be used to move to z &gt;
        1:
      </p>
<pre class="programlisting"><span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">z</span><span class="special">+</span><span class="number">1</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
</pre>
<p>
        Note that while this involves a subtraction, it appears not to suffer from
        cancellation error: as z decreases from 1 the <code class="computeroutput"><span class="special">-</span><span class="identifier">log</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span></code> term grows positive much more rapidly than
        the <code class="computeroutput"><span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">z</span><span class="special">+</span><span class="number">1</span><span class="special">)</span></code> term becomes negative. So in this specific
        case, significant digits are preserved, rather than cancelled.
      </p>
<p>
        For other types which do have a <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos
        approximation</a> defined for them the current solution is as follows:
        imagine we balance the two terms in the <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos
        approximation</a> by dividing the power term by its value at <span class="emphasis"><em>z
        = 1</em></span>, and then multiplying the Lanczos coefficients by the same
        value. Now each term will take the value 1 at <span class="emphasis"><em>z = 1</em></span>
        and we can rearrange the power terms in terms of log1p. Likewise if we subtract
        1 from the Lanczos sum part (algebraically, by subtracting the value of each
        term at <span class="emphasis"><em>z = 1</em></span>), we obtain a new summation that can be
        also be fed into log1p. Crucially, all of the terms tend to zero, as <span class="emphasis"><em>z
        -&gt; 1</em></span>:
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../equations/lgamm5.svg"></span>
      </p>
<p>
        The C<sub>k</sub> &#160; terms in the above are the same as in the <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos
        approximation</a>.
      </p>
<p>
        A similar rearrangement can be performed at <span class="emphasis"><em>z = 2</em></span>:
      </p>
<p>
        <span class="inlinemediaobject"><img src="../../../equations/lgamm6.svg"></span>
      </p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014 Nikhar Agrawal,
      Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
      Holin, Bruno Lalande, John Maddock, Johan R&#229;de, Gautam Sewani, Benjamin Sobotta,
      Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="tgamma.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_gamma.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="digamma.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>