1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Additional Implementation Notes</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
<link rel="home" href="../index.html" title="Math Toolkit 2.2.0">
<link rel="up" href="../backgrounders.html" title="Chapter 16. Backgrounders">
<link rel="prev" href="../backgrounders.html" title="Chapter 16. Backgrounders">
<link rel="next" href="special_tut.html" title="Tutorial: How to Write a New Special Function">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../backgrounders.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../backgrounders.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="special_tut.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.sf_implementation"></a><a class="link" href="sf_implementation.html" title="Additional Implementation Notes">Additional Implementation
Notes</a>
</h2></div></div></div>
<p>
The majority of the implementation notes are included with the documentation
of each function or distribution. The notes here are of a more general nature,
and reflect more the general implementation philosophy used.
</p>
<h5>
<a name="math_toolkit.sf_implementation.h0"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.implemention_philosophy"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.implemention_philosophy">Implemention
philosophy</a>
</h5>
<p>
"First be right, then be fast."
</p>
<p>
There will always be potential compromises to be made between speed and accuracy.
It may be possible to find faster methods, particularly for certain limited
ranges of arguments, but for most applications of math functions and distributions,
we judge that speed is rarely as important as accuracy.
</p>
<p>
So our priority is accuracy.
</p>
<p>
To permit evaluation of accuracy of the special functions, production of extremely
accurate tables of test values has received considerable effort.
</p>
<p>
(It also required much CPU effort - there was some danger of molten plastic
dripping from the bottom of JM's laptop, so instead, PAB's Dual-core desktop
was kept 50% busy for <span class="bold"><strong>days</strong></span> calculating some
tables of test values!)
</p>
<p>
For a specific RealType, say float or double, it may be possible to find approximations
for some functions that are simpler and thus faster, but less accurate (perhaps
because there are no refining iterations, for example, when calculating inverse
functions).
</p>
<p>
If these prove accurate enough to be "fit for his purpose", then
a user may substitute his custom specialization.
</p>
<p>
For example, there are approximations dating back from times when computation
was a <span class="bold"><strong>lot</strong></span> more expensive:
</p>
<p>
H Goldberg and H Levine, Approximate formulas for percentage points and normalisation
of t and chi squared, Ann. Math. Stat., 17(4), 216 - 225 (Dec 1946).
</p>
<p>
A H Carter, Approximations to percentage points of the z-distribution, Biometrika
34(2), 352 - 358 (Dec 1947).
</p>
<p>
These could still provide sufficient accuracy for some speed-critical applications.
</p>
<h5>
<a name="math_toolkit.sf_implementation.h1"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.accuracy_and_representation_of_t"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.accuracy_and_representation_of_t">Accuracy
and Representation of Test Values</a>
</h5>
<p>
In order to be accurate enough for as many as possible real types, constant
values are given to 50 decimal digits if available (though many sources proved
only accurate near to 64-bit double precision). Values are specified as long
double types by appending L, unless they are exactly representable, for example
integers, or binary fractions like 0.125. This avoids the risk of loss of accuracy
converting from double, the default type. Values are used after static_cast<RealType>(1.2345L)
to provide the appropriate RealType for spot tests.
</p>
<p>
Functions that return constants values, like kurtosis for example, are written
as
</p>
<p>
<code class="computeroutput"><span class="keyword">static_cast</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>(-</span><span class="number">3</span><span class="special">)</span> <span class="special">/</span>
<span class="number">5</span><span class="special">;</span></code>
</p>
<p>
to provide the most accurate value that the compiler can compute for the real
type. (The denominator is an integer and so will be promoted exactly).
</p>
<p>
So tests for one third, <span class="bold"><strong>not</strong></span> exactly representable
with radix two floating-point, (should) use, for example:
</p>
<p>
<code class="computeroutput"><span class="keyword">static_cast</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>(</span><span class="number">1</span><span class="special">)</span> <span class="special">/</span>
<span class="number">3</span><span class="special">;</span></code>
</p>
<p>
If a function is very sensitive to changes in input, specifying an inexact
value as input (such as 0.1) can throw the result off by a noticeable amount:
0.1f is "wrong" by ~1e-7 for example (because 0.1 has no exact binary
representation). That is why exact binary values - halves, quarters, and eighths
etc - are used in test code along with the occasional fraction <code class="computeroutput"><span class="identifier">a</span><span class="special">/</span><span class="identifier">b</span></code>
with <code class="computeroutput"><span class="identifier">b</span></code> a power of two (in order
to ensure that the result is an exactly representable binary value).
</p>
<h5>
<a name="math_toolkit.sf_implementation.h2"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.tolerance_of_tests"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.tolerance_of_tests">Tolerance
of Tests</a>
</h5>
<p>
The tolerances need to be set to the maximum of:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
Some epsilon value.
</li>
<li class="listitem">
The accuracy of the data (often only near 64-bit double).
</li>
</ul></div>
<p>
Otherwise when long double has more digits than the test data, then no amount
of tweaking an epsilon based tolerance will work.
</p>
<p>
A common problem is when tolerances that are suitable for implementations like
Microsoft VS.NET where double and long double are the same size: tests fail
on other systems where long double is more accurate than double. Check first
that the suffix L is present, and then that the tolerance is big enough.
</p>
<h5>
<a name="math_toolkit.sf_implementation.h3"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.handling_unsuitable_arguments"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.handling_unsuitable_arguments">Handling
Unsuitable Arguments</a>
</h5>
<p>
In <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1665.pdf" target="_top">Errors
in Mathematical Special Functions</a>, J. Marraffino & M. Paterno it
is proposed that signalling a domain error is mandatory when the argument would
give an mathematically undefined result.
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
Guideline 1
</li></ul></div>
<div class="blockquote"><blockquote class="blockquote"><p>
A mathematical function is said to be defined at a point a = (a1, a2, . .
.) if the limits as x = (x1, x2, . . .) 'approaches a from all directions
agree'. The defined value may be any number, or +infinity, or -infinity.
</p></blockquote></div>
<p>
Put crudely, if the function goes to + infinity and then emerges 'round-the-back'
with - infinity, it is NOT defined.
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
The library function which approximates a mathematical function shall signal
a domain error whenever evaluated with argument values for which the mathematical
function is undefined.
</p></blockquote></div>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
Guideline 2
</li></ul></div>
<div class="blockquote"><blockquote class="blockquote"><p>
The library function which approximates a mathematical function shall signal
a domain error whenever evaluated with argument values for which the mathematical
function obtains a non-real value.
</p></blockquote></div>
<p>
This implementation is believed to follow these proposals and to assist compatibility
with <span class="emphasis"><em>ISO/IEC 9899:1999 Programming languages - C</em></span> and with
the <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf" target="_top">Draft
Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph
5</a>. <a class="link" href="error_handling.html" title="Error Handling">See also domain_error</a>.
</p>
<p>
See <a class="link" href="pol_ref.html" title="Policy Reference">policy reference</a> for details
of the error handling policies that should allow a user to comply with any
of these recommendations, as well as other behaviour.
</p>
<p>
See <a class="link" href="error_handling.html" title="Error Handling">error handling</a> for a
detailed explanation of the mechanism, and <a class="link" href="stat_tut/weg/error_eg.html" title="Error Handling Example">error_handling
example</a> and <a href="../../../example/error_handling_example.cpp" target="_top">error_handling_example.cpp</a>
</p>
<div class="caution"><table border="0" summary="Caution">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../doc/src/images/caution.png"></td>
<th align="left">Caution</th>
</tr>
<tr><td align="left" valign="top"><p>
If you enable throw but do NOT have try & catch block, then the program
will terminate with an uncaught exception and probably abort. Therefore to
get the benefit of helpful error messages, enabling <span class="bold"><strong>all</strong></span>
exceptions <span class="bold"><strong>and</strong></span> using try&catch is recommended
for all applications. However, for simplicity, this is not done for most
examples.
</p></td></tr>
</table></div>
<h5>
<a name="math_toolkit.sf_implementation.h4"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.handling_of_functions_that_are_n"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.handling_of_functions_that_are_n">Handling
of Functions that are Not Mathematically defined</a>
</h5>
<p>
Functions that are not mathematically defined, like the Cauchy mean, fail to
compile by default. A <a class="link" href="pol_ref/assert_undefined.html" title="Mathematically Undefined Function Policies">policy</a>
allows control of this.
</p>
<p>
If the policy is to permit undefined functions, then calling them throws a
domain error, by default. But the error policy can be set to not throw, and
to return NaN instead. For example,
</p>
<p>
<code class="computeroutput"><span class="preprocessor">#define</span> <span class="identifier">BOOST_MATH_DOMAIN_ERROR_POLICY</span>
<span class="identifier">ignore_error</span></code>
</p>
<p>
appears before the first Boost include, then if the un-implemented function
is called, mean(cauchy<>()) will return std::numeric_limits<T>::quiet_NaN().
</p>
<div class="warning"><table border="0" summary="Warning">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Warning]" src="../../../../../doc/src/images/warning.png"></td>
<th align="left">Warning</th>
</tr>
<tr><td align="left" valign="top"><p>
If <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">has_quiet_NaN</span></code> is false (for example, if
T is a User-defined type without NaN support), then an exception will always
be thrown when a domain error occurs. Catching exceptions is therefore strongly
recommended.
</p></td></tr>
</table></div>
<h5>
<a name="math_toolkit.sf_implementation.h5"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.median_of_distributions"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.median_of_distributions">Median of
distributions</a>
</h5>
<p>
There are many distributions for which we have been unable to find an analytic
formula, and this has deterred us from implementing <a href="http://en.wikipedia.org/wiki/Median" target="_top">median
functions</a>, the mid-point in a list of values.
</p>
<p>
However a useful numerical approximation for distribution <code class="computeroutput"><span class="identifier">dist</span></code>
is available as usual as an accessor non-member function median using <code class="computeroutput"><span class="identifier">median</span><span class="special">(</span><span class="identifier">dist</span><span class="special">)</span></code>, that may be evaluated (in the absence of
an analytic formula) by calling
</p>
<p>
<code class="computeroutput"><span class="identifier">quantile</span><span class="special">(</span><span class="identifier">dist</span><span class="special">,</span> <span class="number">0.5</span><span class="special">)</span></code> (this is the <span class="emphasis"><em>mathematical</em></span>
definition of course).
</p>
<p>
<a href="http://www.amstat.org/publications/jse/v13n2/vonhippel.html" target="_top">Mean,
Median, and Skew, Paul T von Hippel</a>
</p>
<p>
<a href="http://documents.wolfram.co.jp/teachersedition/MathematicaBook/24.5.html" target="_top">Descriptive
Statistics,</a>
</p>
<p>
<a href="http://documents.wolfram.co.jp/v5/Add-onsLinks/StandardPackages/Statistics/DescriptiveStatistics.html" target="_top">and
</a>
</p>
<p>
<a href="http://documents.wolfram.com/v5/TheMathematicaBook/AdvancedMathematicsInMathematica/NumericalOperationsOnData/3.8.1.html" target="_top">Mathematica
Basic Statistics.</a> give more detail, in particular for discrete distributions.
</p>
<h5>
<a name="math_toolkit.sf_implementation.h6"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.handling_of_floating_point_infin"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.handling_of_floating_point_infin">Handling
of Floating-Point Infinity</a>
</h5>
<p>
Some functions and distributions are well defined with + or - infinity as argument(s),
but after some experiments with handling infinite arguments as special cases,
we concluded that it was generally more useful to forbid this, and instead
to return the result of <a class="link" href="error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
</p>
<p>
Handling infinity as special cases is additionally complicated because, unlike
built-in types on most - but not all - platforms, not all User-Defined Types
are specialized to provide <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>::</span><span class="identifier">infinity</span><span class="special">()</span></code> and would return zero rather than any representation
of infinity.
</p>
<p>
The rationale is that non-finiteness may happen because of error or overflow
in the users code, and it will be more helpful for this to be diagnosed promptly
rather than just continuing. The code also became much more complicated, more
error-prone, much more work to test, and much less readable.
</p>
<p>
However in a few cases, for example normal, where we felt it obvious, we have
permitted argument(s) to be infinity, provided infinity is implemented for
the <code class="computeroutput"><span class="identifier">RealType</span></code> on that implementation,
and it is supported and tested by the distribution.
</p>
<p>
The range for these distributions is set to infinity if supported by the platform,
(by testing <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>::</span><span class="identifier">has_infinity</span></code>) else the maximum value provided
for the <code class="computeroutput"><span class="identifier">RealType</span></code> by Boost.Math.
</p>
<p>
Testing for has_infinity is obviously important for arbitrary precision types
where infinity makes much less sense than for IEEE754 floating-point.
</p>
<p>
So far we have not set <code class="computeroutput"><span class="identifier">support</span><span class="special">()</span></code> function (only range) on the grounds that
the PDF is uninteresting/zero for infinities.
</p>
<p>
Users who require special handling of infinity (or other specific value) can,
of course, always intercept this before calling a distribution or function
and return their own choice of value, or other behavior. This will often be
simpler than trying to handle the aftermath of the error policy.
</p>
<p>
Overflow, underflow, denorm can be handled using <a class="link" href="pol_ref/error_handling_policies.html" title="Error Handling Policies">error
handling policies</a>.
</p>
<p>
We have also tried to catch boundary cases where the mathematical specification
would result in divide by zero or overflow and signalling these similarly.
What happens at (and near), poles can be controlled through <a class="link" href="pol_ref/error_handling_policies.html" title="Error Handling Policies">error
handling policies</a>.
</p>
<h5>
<a name="math_toolkit.sf_implementation.h7"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.scale_shape_and_location"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.scale_shape_and_location">Scale, Shape
and Location</a>
</h5>
<p>
We considered adding location and scale to the list of functions, for example:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">></span>
<span class="keyword">inline</span> <span class="identifier">RealType</span> <span class="identifier">scale</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">triangular_distribution</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>&</span> <span class="identifier">dist</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">RealType</span> <span class="identifier">lower</span> <span class="special">=</span> <span class="identifier">dist</span><span class="special">.</span><span class="identifier">lower</span><span class="special">();</span>
<span class="identifier">RealType</span> <span class="identifier">mode</span> <span class="special">=</span> <span class="identifier">dist</span><span class="special">.</span><span class="identifier">mode</span><span class="special">();</span>
<span class="identifier">RealType</span> <span class="identifier">upper</span> <span class="special">=</span> <span class="identifier">dist</span><span class="special">.</span><span class="identifier">upper</span><span class="special">();</span>
<span class="identifier">RealType</span> <span class="identifier">result</span><span class="special">;</span> <span class="comment">// of checks.</span>
<span class="keyword">if</span><span class="special">(</span><span class="keyword">false</span> <span class="special">==</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">check_triangular</span><span class="special">(</span><span class="identifier">BOOST_CURRENT_FUNCTION</span><span class="special">,</span> <span class="identifier">lower</span><span class="special">,</span> <span class="identifier">mode</span><span class="special">,</span> <span class="identifier">upper</span><span class="special">,</span> <span class="special">&</span><span class="identifier">result</span><span class="special">))</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">return</span> <span class="special">(</span><span class="identifier">upper</span> <span class="special">-</span> <span class="identifier">lower</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
but found that these concepts are not defined (or their definition too contentious)
for too many distributions to be generally applicable. Because they are non-member
functions, they can be added if required.
</p>
<h5>
<a name="math_toolkit.sf_implementation.h8"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.notes_on_implementation_of_speci"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.notes_on_implementation_of_speci">Notes
on Implementation of Specific Functions & Distributions</a>
</h5>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
Default parameters for the Triangular Distribution. We are uncertain about
the best default parameters. Some sources suggest that the Standard Triangular
Distribution has lower = 0, mode = half and upper = 1. However as a approximation
for the normal distribution, the most common usage, lower = -1, mode =
0 and upper = 1 would be more suitable.
</li></ul></div>
<h5>
<a name="math_toolkit.sf_implementation.h9"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.rational_approximations_used"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">Rational
Approximations Used</a>
</h5>
<p>
Some of the special functions in this library are implemented via rational
approximations. These are either taken from the literature, or devised by John
Maddock using <a class="link" href="internals2/minimax.html" title="Minimax Approximations and the Remez Algorithm">our Remez code</a>.
</p>
<p>
Rational rather than Polynomial approximations are used to ensure accuracy:
polynomial approximations are often wonderful up to a certain level of accuracy,
but then quite often fail to provide much greater accuracy no matter how many
more terms are added.
</p>
<p>
Our own approximations were devised either for added accuracy (to support 128-bit
long doubles for example), or because literature methods were unavailable or
under non-BSL compatible license. Our Remez code is known to produce good agreement
with literature results in fairly simple "toy" cases. All approximations
were checked for convergence and to ensure that they were not ill-conditioned
(the coefficients can give a theoretically good solution, but the resulting
rational function may be un-computable at fixed precision).
</p>
<p>
Recomputing using different Remez implementations may well produce differing
coefficients: the problem is well known to be ill conditioned in general, and
our Remez implementation often found a broad and ill-defined minima for many
of these approximations (of course for simple "toy" examples like
approximating <code class="computeroutput"><span class="identifier">exp</span></code> the minima
is well defined, and the coeffiecents should agree no matter whose Remez implementation
is used). This should not in general effect the validity of the approximations:
there's good literature supporting the idea that coefficients can be "in
error" without necessarily adversely effecting the result. Note that "in
error" has a special meaning in this context, see <a href="http://front.math.ucdavis.edu/0101.5042" target="_top">"Approximate
construction of rational approximations and the effect of error autocorrection.",
Grigori Litvinov, eprint arXiv:math/0101042</a>. Therefore the coefficients
still need to be accurately calculated, even if they can be in error compared
to the "true" minimax solution.
</p>
<h5>
<a name="math_toolkit.sf_implementation.h10"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.representation_of_mathematical_c"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.representation_of_mathematical_c">Representation
of Mathematical Constants</a>
</h5>
<p>
A macro BOOST_DEFINE_MATH_CONSTANT in constants.hpp is used to provide high
accuracy constants to mathematical functions and distributions, since it is
important to provide values uniformly for both built-in float, double and long
double types, and for User Defined types in <a href="http://www.boost.org/doc/libs/1_53_0_beta1/libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
like <a href="http://www.boost.org/doc/libs/1_53_0_beta1/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_dec_float.html" target="_top">cpp_dec_float</a>.
and others like NTL::quad_float and NTL::RR.
</p>
<p>
To permit calculations in this Math ToolKit and its tests, (and elsewhere)
at about 100 decimal digits with NTL::RR type, it is obviously necessary to
define constants to this accuracy.
</p>
<p>
However, some compilers do not accept decimal digits strings as long as this.
So the constant is split into two parts, with the 1st containing at least long
double precision, and the 2nd zero if not needed or known. The 3rd part permits
an exponent to be provided if necessary (use zero if none) - the other two
parameters may only contain decimal digits (and sign and decimal point), and
may NOT include an exponent like 1.234E99 (nor a trailing F or L). The second
digit string is only used if T is a User-Defined Type, when the constant is
converted to a long string literal and lexical_casted to type T. (This is necessary
because you can't use a numeric constant since even a long double might not
have enough digits).
</p>
<p>
For example, pi is defined:
</p>
<pre class="programlisting"><span class="identifier">BOOST_DEFINE_MATH_CONSTANT</span><span class="special">(</span><span class="identifier">pi</span><span class="special">,</span>
<span class="number">3.141592653589793238462643383279502884197169399375105820974944</span><span class="special">,</span>
<span class="number">5923078164062862089986280348253421170679821480865132823066470938446095505</span><span class="special">,</span>
<span class="number">0</span><span class="special">)</span>
</pre>
<p>
And used thus:
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">constants</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">diameter</span> <span class="special">=</span> <span class="number">1.</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">radius</span> <span class="special">=</span> <span class="identifier">diameter</span> <span class="special">*</span> <span class="identifier">pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>();</span>
<span class="keyword">or</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">constants</span><span class="special">::</span><span class="identifier">pi</span><span class="special"><</span><span class="identifier">NTL</span><span class="special">::</span><span class="identifier">RR</span><span class="special">>()</span>
</pre>
<p>
Note that it is necessary (if inconvenient) to specify the type explicitly.
</p>
<p>
So you cannot write
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">p</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">constants</span><span class="special">::</span><span class="identifier">pi</span><span class="special"><>();</span> <span class="comment">// could not deduce template argument for 'T'</span>
</pre>
<p>
Neither can you write:
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">p</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">constants</span><span class="special">::</span><span class="identifier">pi</span><span class="special">;</span> <span class="comment">// Context does not allow for disambiguation of overloaded function</span>
<span class="keyword">double</span> <span class="identifier">p</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">constants</span><span class="special">::</span><span class="identifier">pi</span><span class="special">();</span> <span class="comment">// Context does not allow for disambiguation of overloaded function</span>
</pre>
<h5>
<a name="math_toolkit.sf_implementation.h11"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.thread_safety"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.thread_safety">Thread
safety</a>
</h5>
<p>
Reporting of error by setting <code class="computeroutput"><span class="identifier">errno</span></code>
should be thread-safe already (otherwise none of the std lib math functions
would be thread safe?). If you turn on reporting of errors via exceptions,
<code class="computeroutput"><span class="identifier">errno</span></code> gets left unused anyway.
</p>
<p>
For normal C++ usage, the Boost.Math <code class="computeroutput"><span class="keyword">static</span>
<span class="keyword">const</span></code> constants are now thread-safe
so for built-in real-number types: <code class="computeroutput"><span class="keyword">float</span></code>,
<code class="computeroutput"><span class="keyword">double</span></code> and <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code> are all thread safe.
</p>
<p>
For User_defined types, for example, <a href="http://www.boost.org/doc/libs/1_53_0_beta1/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_dec_float.html" target="_top">cpp_dec_float</a>,
the Boost.Math should also be thread-safe, (thought we are unsure how to rigorously
prove this).
</p>
<p>
(Thread safety has received attention in the C++11 Standard revision, so hopefully
all compilers will do the right thing here at some point.)
</p>
<h5>
<a name="math_toolkit.sf_implementation.h12"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.sources_of_test_data"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.sources_of_test_data">Sources
of Test Data</a>
</h5>
<p>
We found a large number of sources of test data. We have assumed that these
are <span class="emphasis"><em>"known good"</em></span> if they agree with the results
from our test and only consulted other sources for their <span class="emphasis"><em>'vote'</em></span>
in the case of serious disagreement. The accuracy, actual and claimed, vary
very widely. Only <a href="http://functions.wolfram.com/" target="_top">Wolfram Mathematica
functions</a> provided a higher accuracy than C++ double (64-bit floating-point)
and was regarded as the most-trusted source by far. The <a href="http://www.r-project.org/" target="_top">The
R Project for Statistical Computing</a> provided the widest range of distributions,
but the usual Intel X86 distribution uses 64-but doubles, so our use was limited
to the 15 to 17 decimal digit accuracy.
</p>
<p>
A useful index of sources is: <a href="http://www.sal.hut.fi/Teaching/Resources/ProbStat/table.html" target="_top">Web-oriented
Teaching Resources in Probability and Statistics</a>
</p>
<p>
<a href="http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm" target="_top">Statlet</a>:
Is a Javascript application that calculates and plots probability distributions,
and provides the most complete range of distributions:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
Bernoulli, Binomial, discrete uniform, geometric, hypergeometric, negative
binomial, Poisson, beta, Cauchy-Lorentz, chi-sequared, Erlang, exponential,
extreme value, Fisher, gamma, Laplace, logistic, lognormal, normal, Parteo,
Student's t, triangular, uniform, and Weibull.
</p></blockquote></div>
<p>
It calculates pdf, cdf, survivor, log survivor, hazard, tail areas, & critical
values for 5 tail values.
</p>
<p>
It is also the only independent source found for the Weibull distribution;
unfortunately it appears to suffer from very poor accuracy in areas where the
underlying special function is known to be difficult to implement.
</p>
<h5>
<a name="math_toolkit.sf_implementation.h13"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.testing_for_invalid_parameters_t"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.testing_for_invalid_parameters_t">Testing
for Invalid Parameters to Functions and Constructors</a>
</h5>
<p>
After finding that some 'bad' parameters (like NaN) were not throwing a <code class="computeroutput"><span class="identifier">domain_error</span></code> exception as they should, a
function
</p>
<p>
<code class="computeroutput"><span class="identifier">check_out_of_range</span></code> (in <code class="computeroutput"><span class="identifier">test_out_of_range</span><span class="special">.</span><span class="identifier">hpp</span></code>) was devised by JM to check (using Boost.Test's
BOOST_CHECK_THROW macro) that bad parameters passed to constructors and functions
throw <code class="computeroutput"><span class="identifier">domain_error</span></code> exceptions.
</p>
<p>
Usage is <code class="computeroutput"><span class="identifier">check_out_of_range</span><span class="special"><</span> <span class="identifier">DistributionType</span>
<span class="special">>(</span><span class="identifier">list</span><span class="special">-</span><span class="identifier">of</span><span class="special">-</span><span class="identifier">params</span><span class="special">);</span></code>
Where list-of-params is a list of <span class="bold"><strong>valid</strong></span> parameters
from which the distribution can be constructed - ie the same number of args
are passed to the function, as are passed to the distribution constructor.
</p>
<p>
The values of the parameters are not important, but must be <span class="bold"><strong>valid</strong></span>
to pass the contructor checks; the default values are suitable, but must be
explicitly provided, for example:
</p>
<pre class="programlisting"><span class="identifier">check_out_of_range</span><span class="special"><</span><span class="identifier">extreme_value_distribution</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">></span> <span class="special">>(</span><span class="number">1</span><span class="special">,</span> <span class="number">2</span><span class="special">);</span>
</pre>
<p>
Checks made are:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
Infinity or NaN (if available) passed in place of each of the valid params.
</li>
<li class="listitem">
Infinity or NaN (if available) as a random variable.
</li>
<li class="listitem">
Out-of-range random variable passed to pdf and cdf (ie outside of "range(DistributionType)").
</li>
<li class="listitem">
Out-of-range probability passed to quantile function and complement.
</li>
</ul></div>
<p>
but does <span class="bold"><strong>not</strong></span> check finite but out-of-range
parameters to the constructor because these are specific to each distribution,
for example:
</p>
<pre class="programlisting"><span class="identifier">BOOST_CHECK_THROW</span><span class="special">(</span><span class="identifier">pdf</span><span class="special">(</span><span class="identifier">pareto_distribution</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>(</span><span class="number">0</span><span class="special">,</span> <span class="number">1</span><span class="special">),</span> <span class="number">0</span><span class="special">),</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">domain_error</span><span class="special">);</span>
<span class="identifier">BOOST_CHECK_THROW</span><span class="special">(</span><span class="identifier">pdf</span><span class="special">(</span><span class="identifier">pareto_distribution</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>(</span><span class="number">1</span><span class="special">,</span> <span class="number">0</span><span class="special">),</span> <span class="number">0</span><span class="special">),</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">domain_error</span><span class="special">);</span>
</pre>
<p>
checks <code class="computeroutput"><span class="identifier">scale</span></code> and <code class="computeroutput"><span class="identifier">shape</span></code> parameters are both > 0 by checking
that <code class="computeroutput"><span class="identifier">domain_error</span></code> exception
is thrown if either are == 0.
</p>
<p>
(Use of <code class="computeroutput"><span class="identifier">check_out_of_range</span></code>
function may mean that some previous tests are now redundant).
</p>
<p>
It was also noted that if more than one parameter is bad, then only the first
detected will be reported by the error message.
</p>
<h5>
<a name="math_toolkit.sf_implementation.h14"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.creating_and_managing_the_equati"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.creating_and_managing_the_equati">Creating
and Managing the Equations</a>
</h5>
<p>
Equations that fit on a single line can most easily be produced by inline Quickbook
code using templates for Unicode Greek and Unicode Math symbols. All Greek
letter and small set of Math symbols is available at /boost-path/libs/math/doc/sf_and_dist/html4_symbols.qbk
</p>
<p>
Where equations need to use more than one line, real Math editors were used.
</p>
<p>
The primary source for the equations is now <a href="http://www.w3.org/Math/" target="_top">MathML</a>:
see the *.mml files in libs/math/doc/sf_and_dist/equations/.
</p>
<p>
These are most easily edited by a GUI editor such as <a href="http://mathcast.sourceforge.net/home.html" target="_top">Mathcast</a>,
please note that the equation editor supplied with Open Office currently mangles
these files and should not currently be used.
</p>
<p>
Conversion to SVG was achieved using <a href="http://www.grigoriev.ru/svgmath/" target="_top">SVGMath</a>
and a command line such as:
</p>
<pre class="programlisting">$for file in *.mml; do
>/cygdrive/c/Python25/python.exe 'C:\download\open\SVGMath-0.3.1\math2svg.py' \
>>$file > $(basename $file .mml).svg
>done
</pre>
<p>
See also the section on "Using Python to run Inkscape" and "Using
inkscape to convert scalable vector SVG files to Portable Network graphic PNG".
</p>
<p>
Note that SVGMath requires that the mml files are <span class="bold"><strong>not</strong></span>
wrapped in an XHTML XML wrapper - this is added by Mathcast by default - one
workaround is to copy an existing mml file and then edit it with Mathcast:
the existing format should then be preserved. This is a bug in the XML parser
used by SVGMath which the author is aware of.
</p>
<p>
If neccessary the XHTML wrapper can be removed with:
</p>
<pre class="programlisting">cat filename | tr -d "\r\n" | sed -e 's/.*\(<math[^>]*>.*</math>\).*/\1/' > newfile</pre>
<p>
Setting up fonts for SVGMath is currently rather tricky, on a Windows XP system
JM's font setup is the same as the sample config file provided with SVGMath
but with:
</p>
<pre class="programlisting"> <!-- Double-struck -->
<mathvariant name="double-struck" family="Mathematica7, Lucida Sans Unicode"/>
</pre>
<p>
changed to:
</p>
<pre class="programlisting"> <!-- Double-struck -->
<mathvariant name="double-struck" family="Lucida Sans Unicode"/>
</pre>
<p>
Note that unlike the sample config file supplied with SVGMath, this does not
make use of the <a href="http://support.wolfram.com/technotes/fonts/windows/latestfonts.html" target="_top">Mathematica
7 font</a> as this lacks sufficient Unicode information for it to be used
with either SVGMath or XEP "as is".
</p>
<p>
Also note that the SVG files in the repository are almost certainly Windows-specific
since they reference various Windows Fonts.
</p>
<p>
PNG files can be created from the SVGs using <a href="http://xmlgraphics.apache.org/batik/tools/rasterizer.html" target="_top">Batik</a>
and a command such as:
</p>
<pre class="programlisting">java -jar 'C:\download\open\batik-1.7\batik-rasterizer.jar' -dpi 120 *.svg</pre>
<p>
Or using Inkscape (File, Export bitmap, Drawing tab, bitmap size (default size,
100 dpi), Filename (default). png)
</p>
<p>
or Using Cygwin, a command such as:
</p>
<pre class="programlisting">for file in *.svg; do
/cygdrive/c/progra~1/Inkscape/inkscape -d 120 -e $(cygpath -a -w $(basename $file .svg).png) $(cygpath -a -w $file);
done</pre>
<p>
Using BASH
</p>
<pre class="programlisting"># Convert single SVG to PNG file.
# /c/progra~1/Inkscape/inkscape -d 120 -e a.png a.svg
</pre>
<p>
or to convert All files in folder SVG to PNG.
</p>
<pre class="programlisting">for file in *.svg; do
/c/progra~1/Inkscape/inkscape -d 120 -e $(basename $file .svg).png $file
done
</pre>
<p>
Currently Inkscape seems to generate the better looking PNGs.
</p>
<p>
The PDF is generated into \pdf\math.pdf using a command from a shell or command
window with current directory \math_toolkit\libs\math\doc\sf_and_dist, typically:
</p>
<pre class="programlisting">bjam -a pdf >math_pdf.log</pre>
<p>
Note that XEP will have to be configured to <span class="bold"><strong>use and embed</strong></span>
whatever fonts are used by the SVG equations (almost certainly editing the
sample xep.xml provided by the XEP installation). If you fail to do this you
will get XEP warnings in the log file like
</p>
<pre class="programlisting">[warning]could not find any font family matching "Times New Roman"; replaced by Helvetica</pre>
<p>
(html is the default so it is generated at libs\math\doc\html\index.html using
command line >bjam -a > math_toolkit.docs.log).
</p>
<pre class="programlisting"><span class="special"><!--</span> <span class="identifier">Sample</span> <span class="identifier">configuration</span> <span class="keyword">for</span> <span class="identifier">Windows</span> <span class="identifier">TrueType</span> <span class="identifier">fonts</span><span class="special">.</span> <span class="special">--></span>
</pre>
<p>
is provided in the xep.xml downloaded, but the Windows TrueType fonts are commented
out.
</p>
<p>
JM's XEP config file \xep\xep.xml has the following font configuration section
added:
</p>
<pre class="programlisting"> <font-group xml:base="file:/C:/Windows/Fonts/" label="Windows TrueType" embed="true" subset="true">
<font-family name="Arial">
<font><font-data ttf="arial.ttf"/></font>
<font style="oblique"><font-data ttf="ariali.ttf"/></font>
<font weight="bold"><font-data ttf="arialbd.ttf"/></font>
<font weight="bold" style="oblique"><font-data ttf="arialbi.ttf"/></font>
</font-family>
<font-family name="Times New Roman" ligatures="&#xFB01; &#xFB02;">
<font><font-data ttf="times.ttf"/></font>
<font style="italic"><font-data ttf="timesi.ttf"/></font>
<font weight="bold"><font-data ttf="timesbd.ttf"/></font>
<font weight="bold" style="italic"><font-data ttf="timesbi.ttf"/></font>
</font-family>
<font-family name="Courier New">
<font><font-data ttf="cour.ttf"/></font>
<font style="oblique"><font-data ttf="couri.ttf"/></font>
<font weight="bold"><font-data ttf="courbd.ttf"/></font>
<font weight="bold" style="oblique"><font-data ttf="courbi.ttf"/></font>
</font-family>
<font-family name="Tahoma" embed="true">
<font><font-data ttf="tahoma.ttf"/></font>
<font weight="bold"><font-data ttf="tahomabd.ttf"/></font>
</font-family>
<font-family name="Verdana" embed="true">
<font><font-data ttf="verdana.ttf"/></font>
<font style="oblique"><font-data ttf="verdanai.ttf"/></font>
<font weight="bold"><font-data ttf="verdanab.ttf"/></font>
<font weight="bold" style="oblique"><font-data ttf="verdanaz.ttf"/></font>
</font-family>
<font-family name="Palatino" embed="true" ligatures="&#xFB00; &#xFB01; &#xFB02; &#xFB03; &#xFB04;">
<font><font-data ttf="pala.ttf"/></font>
<font style="italic"><font-data ttf="palai.ttf"/></font>
<font weight="bold"><font-data ttf="palab.ttf"/></font>
<font weight="bold" style="italic"><font-data ttf="palabi.ttf"/></font>
</font-family>
<font-family name="Lucida Sans Unicode">
<!-- <font><font-data ttf="lsansuni.ttf"><<span class="emphasis"><em>font> -->
<!-- actually called l_10646.ttf on Windows 2000 and Vista Sp1 -->
<font><font-data ttf="l_10646.ttf"</em></span>></font>
</font-family>
</pre>
<p>
PAB had to alter his because the Lucida Sans Unicode font had a different name.
Other changes are very likely to be required if you are not using Windows.
</p>
<p>
XZ authored his equations using the venerable Latex, JM converted these to
MathML using <a href="http://gentoo-wiki.com/HOWTO_Convert_LaTeX_to_HTML_with_MathML" target="_top">mxlatex</a>.
This process is currently unreliable and required some manual intervention:
consequently Latex source is not considered a viable route for the automatic
production of SVG versions of equations.
</p>
<p>
Equations are embedded in the quickbook source using the <span class="emphasis"><em>equation</em></span>
template defined in math.qbk. This outputs Docbook XML that looks like:
</p>
<pre class="programlisting"><inlinemediaobject>
<imageobject role="html">
<imagedata fileref="../equations/myfile.png"></imagedata>
</imageobject>
<imageobject role="print">
<imagedata fileref="../equations/myfile.svg"></imagedata>
</imageobject>
</inlinemediaobject>
</pre>
<p>
MathML is not currently present in the Docbook output, or in the generated
HTML: this needs further investigation.
</p>
<h5>
<a name="math_toolkit.sf_implementation.h15"></a>
<span class="phrase"><a name="math_toolkit.sf_implementation.producing_graphs"></a></span><a class="link" href="sf_implementation.html#math_toolkit.sf_implementation.producing_graphs">Producing
Graphs</a>
</h5>
<p>
Graphs were produced in SVG format and then converted to PNG's using the same
process as the equations.
</p>
<p>
The programs <code class="computeroutput"><span class="special">/</span><span class="identifier">libs</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">doc</span><span class="special">/</span><span class="identifier">sf_and_dist</span><span class="special">/</span><span class="identifier">graphs</span><span class="special">/</span><span class="identifier">dist_graphs</span><span class="special">.</span><span class="identifier">cpp</span></code> and <code class="computeroutput"><span class="special">/</span><span class="identifier">libs</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">doc</span><span class="special">/</span><span class="identifier">sf_and_dist</span><span class="special">/</span><span class="identifier">graphs</span><span class="special">/</span><span class="identifier">sf_graphs</span><span class="special">.</span><span class="identifier">cpp</span></code> generate
the SVG's directly using the <a href="http://code.google.com/soc/2007/boost/about.html" target="_top">Google
Summer of Code 2007</a> project of Jacob Voytko (whose work so far, considerably
enhanced and now reasonably mature and usable, by Paul A. Bristow, is at .\boost-sandbox\SOC\2007\visualization).
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012-2014 Nikhar Agrawal,
Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
Holin, Bruno Lalande, John Maddock, Johan Råde, Gautam Sewani, Benjamin Sobotta,
Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../backgrounders.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../backgrounders.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="special_tut.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>
|