1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <pch.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/test/results_collector.hpp>
#include <boost/math/special_functions/beta.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/test/results_collector.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/array.hpp>
#include "table_type.hpp"
#include <iostream>
#include <iomanip>
#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK_CLOSE(a, b, prec); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " , " << data[i][5] << " } " << std::endl;\
}\
}
//
// Implement various versions of inverse of the incomplete beta
// using different root finding algorithms, and deliberately "bad"
// starting conditions: that way we get all the pathological cases
// we could ever wish for!!!
//
template <class T, class Policy>
struct ibeta_roots_1 // for first order algorithms
{
ibeta_roots_1(T _a, T _b, T t, bool inv = false)
: a(_a), b(_b), target(t), invert(inv) {}
T operator()(const T& x)
{
return boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
}
private:
T a, b, target;
bool invert;
};
template <class T, class Policy>
struct ibeta_roots_2 // for second order algorithms
{
ibeta_roots_2(T _a, T _b, T t, bool inv = false)
: a(_a), b(_b), target(t), invert(inv) {}
boost::math::tuple<T, T> operator()(const T& x)
{
typedef typename boost::math::lanczos::lanczos<T, Policy>::type L;
T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
T f1 = invert ?
-boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())
: boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());
T y = 1 - x;
if(y == 0)
y = boost::math::tools::min_value<T>() * 8;
f1 /= y * x;
// make sure we don't have a zero derivative:
if(f1 == 0)
f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;
return boost::math::make_tuple(f, f1);
}
private:
T a, b, target;
bool invert;
};
template <class T, class Policy>
struct ibeta_roots_3 // for third order algorithms
{
ibeta_roots_3(T _a, T _b, T t, bool inv = false)
: a(_a), b(_b), target(t), invert(inv) {}
boost::math::tuple<T, T, T> operator()(const T& x)
{
typedef typename boost::math::lanczos::lanczos<T, Policy>::type L;
T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
T f1 = invert ?
-boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())
: boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());
T y = 1 - x;
if(y == 0)
y = boost::math::tools::min_value<T>() * 8;
f1 /= y * x;
T f2 = f1 * (-y * a + (b - 2) * x + 1) / (y * x);
if(invert)
f2 = -f2;
// make sure we don't have a zero derivative:
if(f1 == 0)
f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;
return boost::math::make_tuple(f, f1, f2);
}
private:
T a, b, target;
bool invert;
};
double inverse_ibeta_bisect(double a, double b, double z)
{
typedef boost::math::policies::policy<> pol;
bool invert = false;
int bits = std::numeric_limits<double>::digits;
//
// special cases, we need to have these because there may be other
// possible answers:
//
if(z == 1) return 1;
if(z == 0) return 0;
//
// We need a good estimate of the error in the incomplete beta function
// so that we don't set the desired precision too high. Assume that 3-bits
// are lost each time the arguments increase by a factor of 10:
//
using namespace std;
int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
if(bits_lost < 0)
bits_lost = 3;
else
bits_lost += 3;
int precision = bits - bits_lost;
double min = 0;
double max = 1;
boost::math::tools::eps_tolerance<double> tol(precision);
return boost::math::tools::bisect(ibeta_roots_1<double, pol>(a, b, z, invert), min, max, tol).first;
}
double inverse_ibeta_newton(double a, double b, double z)
{
double guess = 0.5;
bool invert = false;
int bits = std::numeric_limits<double>::digits;
//
// special cases, we need to have these because there may be other
// possible answers:
//
if(z == 1) return 1;
if(z == 0) return 0;
//
// We need a good estimate of the error in the incomplete beta function
// so that we don't set the desired precision too high. Assume that 3-bits
// are lost each time the arguments increase by a factor of 10:
//
using namespace std;
int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
if(bits_lost < 0)
bits_lost = 3;
else
bits_lost += 3;
int precision = bits - bits_lost;
double min = 0;
double max = 1;
return boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);
}
double inverse_ibeta_halley(double a, double b, double z)
{
double guess = 0.5;
bool invert = false;
int bits = std::numeric_limits<double>::digits;
//
// special cases, we need to have these because there may be other
// possible answers:
//
if(z == 1) return 1;
if(z == 0) return 0;
//
// We need a good estimate of the error in the incomplete beta function
// so that we don't set the desired precision too high. Assume that 3-bits
// are lost each time the arguments increase by a factor of 10:
//
using namespace std;
int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
if(bits_lost < 0)
bits_lost = 3;
else
bits_lost += 3;
int precision = bits - bits_lost;
double min = 0;
double max = 1;
return boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);
}
double inverse_ibeta_schroeder(double a, double b, double z)
{
double guess = 0.5;
bool invert = false;
int bits = std::numeric_limits<double>::digits;
//
// special cases, we need to have these because there may be other
// possible answers:
//
if(z == 1) return 1;
if(z == 0) return 0;
//
// We need a good estimate of the error in the incomplete beta function
// so that we don't set the desired precision too high. Assume that 3-bits
// are lost each time the arguments increase by a factor of 10:
//
using namespace std;
int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
if(bits_lost < 0)
bits_lost = 3;
else
bits_lost += 3;
int precision = bits - bits_lost;
double min = 0;
double max = 1;
return boost::math::tools::schroeder_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);
}
template <class Real, class T>
void test_inverses(const T& data)
{
using namespace std;
typedef typename T::value_type row_type;
typedef Real value_type;
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated
for(unsigned i = 0; i < data.size(); ++i)
{
//
// These inverse tests are thrown off if the output of the
// incomplete beta is too close to 1: basically there is insuffient
// information left in the value we're using as input to the inverse
// to be able to get back to the original value.
//
if(data[i][5] == 0)
{
BOOST_CHECK_EQUAL(inverse_ibeta_halley(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
BOOST_CHECK_EQUAL(inverse_ibeta_schroeder(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
BOOST_CHECK_EQUAL(inverse_ibeta_newton(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
BOOST_CHECK_EQUAL(inverse_ibeta_bisect(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
}
else if((1 - data[i][5] > 0.001)
&& (fabs(data[i][5]) > 2 * boost::math::tools::min_value<value_type>())
&& (fabs(data[i][5]) > 2 * boost::math::tools::min_value<double>()))
{
value_type inv = inverse_ibeta_halley(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i);
inv = inverse_ibeta_schroeder(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i);
inv = inverse_ibeta_newton(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i);
inv = inverse_ibeta_bisect(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i);
}
else if(1 == data[i][5])
{
BOOST_CHECK_EQUAL(inverse_ibeta_halley(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
BOOST_CHECK_EQUAL(inverse_ibeta_schroeder(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
BOOST_CHECK_EQUAL(inverse_ibeta_newton(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
BOOST_CHECK_EQUAL(inverse_ibeta_bisect(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
}
}
}
#ifndef SC_
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
#endif
template <class T>
void test_beta(T, const char* /* name */)
{
//
// The actual test data is rather verbose, so it's in a separate file
//
// The contents are as follows, each row of data contains
// five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
//
# include "ibeta_small_data.ipp"
test_inverses<T>(ibeta_small_data);
# include "ibeta_data.ipp"
test_inverses<T>(ibeta_data);
# include "ibeta_large_data.ipp"
test_inverses<T>(ibeta_large_data);
}
BOOST_AUTO_TEST_CASE( test_main )
{
test_beta(0.1, "double");
}
|