1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
// Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/special_functions/log1p.hpp>
#include <boost/math/special_functions/erf.hpp>
#include <boost/math/constants/constants.hpp>
#include <map>
#include <iostream>
#include <iomanip>
#include "mp_t.hpp"
using namespace std;
using namespace boost::math;
//
// This program calculates the coefficients of the polynomials
// used for the regularized incomplete gamma functions gamma_p
// and gamma_q when parameter a is large, and sigma is small
// (where sigma = fabs(1 - x/a) ).
//
// See "The Asymptotic Expansion of the Incomplete Gamma Functions"
// N. M. Temme.
// Siam J. Math Anal. Vol 10 No 4, July 1979, p757.
// Coeffient calculation is described from Eq 3.8 (p762) onwards.
//
//
// Alpha:
//
mp_t alpha(unsigned k)
{
static map<unsigned, mp_t> data;
if(data.empty())
{
data[1] = 1;
}
map<unsigned, mp_t>::const_iterator pos = data.find(k);
if(pos != data.end())
return (*pos).second;
//
// OK try and calculate the value:
//
mp_t result = alpha(k-1);
for(unsigned j = 2; j <= k-1; ++j)
{
result -= j * alpha(j) * alpha(k-j+1);
}
result /= (k+1);
data[k] = result;
return result;
}
mp_t gamma(unsigned k)
{
static map<unsigned, mp_t> data;
map<unsigned, mp_t>::const_iterator pos = data.find(k);
if(pos != data.end())
return (*pos).second;
mp_t result = (k&1) ? -1 : 1;
for(unsigned i = 1; i <= (2 * k + 1); i += 2)
result *= i;
result *= alpha(2 * k + 1);
data[k] = result;
return result;
}
mp_t Coeff(unsigned n, unsigned k)
{
map<unsigned, map<unsigned, mp_t> > data;
if(data.empty())
data[0][0] = mp_t(-1) / 3;
map<unsigned, map<unsigned, mp_t> >::const_iterator p1 = data.find(n);
if(p1 != data.end())
{
map<unsigned, mp_t>::const_iterator p2 = p1->second.find(k);
if(p2 != p1->second.end())
{
return p2->second;
}
}
//
// If we don't have the value, calculate it:
//
if(k == 0)
{
// special case:
mp_t result = (n+2) * alpha(n+2);
data[n][k] = result;
return result;
}
// general case:
mp_t result = gamma(k) * Coeff(n, 0) + (n+2) * Coeff(n+2, k-1);
data[n][k] = result;
return result;
}
void calculate_terms(double sigma, double a, unsigned bits)
{
cout << endl << endl;
cout << "Sigma: " << sigma << endl;
cout << "A: " << a << endl;
double lambda = 1 - sigma;
cout << "Lambda: " << lambda << endl;
double y = a * (-sigma - log1p(-sigma));
cout << "Y: " << y << endl;
double z = -sqrt(2 * (-sigma - log1p(-sigma)));
cout << "Z: " << z << endl;
double dom = erfc(sqrt(y)) / 2;
cout << "Erfc term: " << dom << endl;
double lead = exp(-y) / sqrt(2 * constants::pi<double>() * a);
cout << "Remainder factor: " << lead << endl;
double eps = ldexp(1.0, 1 - static_cast<int>(bits));
double target = dom * eps / lead;
cout << "Target smallest term: " << target << endl;
unsigned max_n = 0;
for(unsigned n = 0; n < 10000; ++n)
{
double term = tools::real_cast<double>(Coeff(n, 0) * pow(z, (double)n));
if(fabs(term) < target)
{
max_n = n-1;
break;
}
}
cout << "Max n required: " << max_n << endl;
unsigned max_k;
for(unsigned k = 1; k < 10000; ++k)
{
double term = tools::real_cast<double>(Coeff(0, k) * pow(a, -((double)k)));
if(fabs(term) < target)
{
max_k = k-1;
break;
}
}
cout << "Max k required: " << max_k << endl << endl;
bool code = false;
cout << "Print code [0|1]? ";
cin >> code;
int prec = 2 + (static_cast<double>(bits) * 3010LL)/10000;
std::cout << std::scientific << std::setprecision(40);
if(code)
{
cout << " T workspace[" << max_k+1 << "];\n\n";
for(unsigned k = 0; k <= max_k; ++k)
{
cout <<
" static const T C" << k << "[] = {\n";
for(unsigned n = 0; n < 10000; ++n)
{
double term = tools::real_cast<double>(Coeff(n, k) * pow(a, -((double)k)) * pow(z, (double)n));
if(fabs(term) < target)
{
break;
}
cout << " " << Coeff(n, k) << "L,\n";
}
cout <<
" };\n"
" workspace[" << k << "] = tools::evaluate_polynomial(C" << k << ", z);\n\n";
}
cout << " T result = tools::evaluate_polynomial(workspace, 1/a);\n\n";
}
}
int main()
{
bool cont;
do{
cont = false;
double sigma;
cout << "Enter max value for sigma (sigma = |1 - x/a|): ";
cin >> sigma;
double a;
cout << "Enter min value for a: ";
cin >> a;
unsigned precision;
cout << "Enter number of bits precision required: ";
cin >> precision;
calculate_terms(sigma, a, precision);
cout << "Try again[0|1]: ";
cin >> cont;
}while(cont);
return 0;
}
|