1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
/*
* phase_oscillator_ensemble.cpp
*
* Demonstrates the phase transition from an unsynchronized to an synchronized state.
*
* Copyright 2011-2012 Karsten Ahnert
* Copyright 2011-2012 Mario Mulansky
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
*/
#include <iostream>
#include <utility>
#include <boost/numeric/odeint.hpp>
#ifndef M_PI //not there on windows
#define M_PI 3.141592653589793 //...
#endif
#include <boost/random.hpp>
using namespace std;
using namespace boost::numeric::odeint;
//[ phase_oscillator_ensemble_system_function
typedef vector< double > container_type;
pair< double , double > calc_mean_field( const container_type &x )
{
size_t n = x.size();
double cos_sum = 0.0 , sin_sum = 0.0;
for( size_t i=0 ; i<n ; ++i )
{
cos_sum += cos( x[i] );
sin_sum += sin( x[i] );
}
cos_sum /= double( n );
sin_sum /= double( n );
double K = sqrt( cos_sum * cos_sum + sin_sum * sin_sum );
double Theta = atan2( sin_sum , cos_sum );
return make_pair( K , Theta );
}
struct phase_ensemble
{
container_type m_omega;
double m_epsilon;
phase_ensemble( const size_t n , double g = 1.0 , double epsilon = 1.0 )
: m_omega( n , 0.0 ) , m_epsilon( epsilon )
{
create_frequencies( g );
}
void create_frequencies( double g )
{
boost::mt19937 rng;
boost::cauchy_distribution<> cauchy( 0.0 , g );
boost::variate_generator< boost::mt19937&, boost::cauchy_distribution<> > gen( rng , cauchy );
generate( m_omega.begin() , m_omega.end() , gen );
}
void set_epsilon( double epsilon ) { m_epsilon = epsilon; }
double get_epsilon( void ) const { return m_epsilon; }
void operator()( const container_type &x , container_type &dxdt , double /* t */ ) const
{
pair< double , double > mean = calc_mean_field( x );
for( size_t i=0 ; i<x.size() ; ++i )
dxdt[i] = m_omega[i] + m_epsilon * mean.first * sin( mean.second - x[i] );
}
};
//]
//[ phase_oscillator_ensemble_observer
struct statistics_observer
{
double m_K_mean;
size_t m_count;
statistics_observer( void )
: m_K_mean( 0.0 ) , m_count( 0 ) { }
template< class State >
void operator()( const State &x , double t )
{
pair< double , double > mean = calc_mean_field( x );
m_K_mean += mean.first;
++m_count;
}
double get_K_mean( void ) const { return ( m_count != 0 ) ? m_K_mean / double( m_count ) : 0.0 ; }
void reset( void ) { m_K_mean = 0.0; m_count = 0; }
};
//]
int main( int argc , char **argv )
{
//[ phase_oscillator_ensemble_integration
const size_t n = 16384;
const double dt = 0.1;
container_type x( n );
boost::mt19937 rng;
boost::uniform_real<> unif( 0.0 , 2.0 * M_PI );
boost::variate_generator< boost::mt19937&, boost::uniform_real<> > gen( rng , unif );
// gamma = 1, the phase transition occurs at epsilon = 2
phase_ensemble ensemble( n , 1.0 );
statistics_observer obs;
for( double epsilon = 0.0 ; epsilon < 5.0 ; epsilon += 0.1 )
{
ensemble.set_epsilon( epsilon );
obs.reset();
// start with random initial conditions
generate( x.begin() , x.end() , gen );
// calculate some transients steps
integrate_const( runge_kutta4< container_type >() , boost::ref( ensemble ) , x , 0.0 , 10.0 , dt );
// integrate and compute the statistics
integrate_const( runge_kutta4< container_type >() , boost::ref( ensemble ) , x , 0.0 , 100.0 , dt , boost::ref( obs ) );
cout << epsilon << "\t" << obs.get_K_mean() << endl;
}
//]
return 0;
}
|