summaryrefslogtreecommitdiff
path: root/libs/numeric/odeint/examples/solar_system.cpp
blob: 3586d5b86bd4e7a55e20ade8548dbb2e715b2e83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/* Boost libs/numeric/odeint/examples/solar_system.cpp

 Copyright 2010-2012 Karsten Ahnert
 Copyright 2011 Mario Mulansky

 Solar system example for Hamiltonian stepper

 Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
 copy at http://www.boost.org/LICENSE_1_0.txt)
 */


#include <iostream>
#include <boost/array.hpp>

#include <boost/numeric/odeint.hpp>

#include "point_type.hpp"

//[ container_type_definition
// we simulate 5 planets and the sun
const size_t n = 6;

typedef point< double , 3 > point_type;
typedef boost::array< point_type , n > container_type;
typedef boost::array< double , n > mass_type;
//]







//[ coordinate_function
const double gravitational_constant = 2.95912208286e-4;

struct solar_system_coor
{
    const mass_type &m_masses;

    solar_system_coor( const mass_type &masses ) : m_masses( masses ) { }

    void operator()( const container_type &p , container_type &dqdt ) const
    {
        for( size_t i=0 ; i<n ; ++i )
            dqdt[i] = p[i] / m_masses[i];
    }
};
//]


//[ momentum_function
struct solar_system_momentum
{
    const mass_type &m_masses;

    solar_system_momentum( const mass_type &masses ) : m_masses( masses ) { }

    void operator()( const container_type &q , container_type &dpdt ) const
    {
        const size_t n = q.size();
        for( size_t i=0 ; i<n ; ++i )
        {
            dpdt[i] = 0.0;
            for( size_t j=0 ; j<i ; ++j )
            {
                point_type diff = q[j] - q[i];
                double d = abs( diff );
                diff *= ( gravitational_constant * m_masses[i] * m_masses[j] / d / d / d );
                dpdt[i] += diff;
                dpdt[j] -= diff;

            }
        }
    }
};
//]







//[ some_helpers
point_type center_of_mass( const container_type &x , const mass_type &m )
{
    double overall_mass = 0.0;
    point_type mean( 0.0 );
    for( size_t i=0 ; i<x.size() ; ++i )
    {
        overall_mass += m[i];
        mean += m[i] * x[i];
    }
    if( !x.empty() ) mean /= overall_mass;
    return mean;
}


double energy( const container_type &q , const container_type &p , const mass_type &masses )
{
    const size_t n = q.size();
    double en = 0.0;
    for( size_t i=0 ; i<n ; ++i )
    {
        en += 0.5 * norm( p[i] ) / masses[i];
        for( size_t j=0 ; j<i ; ++j )
        {
            double diff = abs( q[i] - q[j] );
            en -= gravitational_constant * masses[j] * masses[i] / diff;
        }
    }
    return en;
}
//]


//[ streaming_observer
struct streaming_observer
{
    std::ostream& m_out;

    streaming_observer( std::ostream &out ) : m_out( out ) { }

    template< class State >
    void operator()( const State &x , double t ) const
    {
        container_type &q = x.first;
        m_out << t;
        for( size_t i=0 ; i<q.size() ; ++i ) m_out << "\t" << q[i];
        m_out << "\n";
    }
};
//]


int main( int argc , char **argv )
{

    using namespace std;
    using namespace boost::numeric::odeint;

    mass_type masses = {{
            1.00000597682 ,      // sun
            0.000954786104043 ,  // jupiter
            0.000285583733151 ,  // saturn
            0.0000437273164546 , // uranus
            0.0000517759138449 , // neptune
            1.0 / ( 1.3e8 )      // pluto
    }};

    container_type q = {{
            point_type( 0.0 , 0.0 , 0.0 ) ,                        // sun
            point_type( -3.5023653 , -3.8169847 , -1.5507963 ) ,   // jupiter
            point_type( 9.0755314 , -3.0458353 , -1.6483708 ) ,    // saturn
            point_type( 8.3101420 , -16.2901086 , -7.2521278 ) ,   // uranus
            point_type( 11.4707666 , -25.7294829 , -10.8169456 ) , // neptune
            point_type( -15.5387357 , -25.2225594 , -3.1902382 )   // pluto
    }};

    container_type p = {{
            point_type( 0.0 , 0.0 , 0.0 ) ,                        // sun
            point_type( 0.00565429 , -0.00412490 , -0.00190589 ) , // jupiter
            point_type( 0.00168318 , 0.00483525 , 0.00192462 ) ,   // saturn
            point_type( 0.00354178 , 0.00137102 , 0.00055029 ) ,   // uranus
            point_type( 0.00288930 , 0.00114527 , 0.00039677 ) ,   // neptune
            point_type( 0.00276725 , -0.00170702 , -0.00136504 )   // pluto
    }};

    point_type qmean = center_of_mass( q , masses );
    point_type pmean = center_of_mass( p , masses );
    for( size_t i=0 ; i<n ; ++i )
    {
        q[i] -= qmean ;
        p[i] -= pmean;
    }

    for( size_t i=0 ; i<n ; ++i ) p[i] *= masses[i];

    //[ integration_solar_system
    typedef symplectic_rkn_sb3a_mclachlan< container_type > stepper_type;
    const double dt = 100.0;
    
    integrate_const(
            stepper_type() ,
            make_pair( solar_system_coor( masses ) , solar_system_momentum( masses ) ) ,
            make_pair( boost::ref( q ) , boost::ref( p ) ) ,
            0.0 , 200000.0 , dt , streaming_observer( cout ) );
    //]


    return 0;
}


/*
Plot with gnuplot:
p "solar_system.dat" u 2:4 w l,"solar_system.dat" u 5:7 w l,"solar_system.dat" u 8:10 w l,"solar_system.dat" u 11:13 w l,"solar_system.dat" u 14:16 w l,"solar_system.dat" u 17:19 w l
 */