1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
/*
* Copyright (c) 2005 Erwin Coumans http://continuousphysics.com/Bullet/
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erwin Coumans makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
/*
Continuous Convex Collision Demo demonstrates an efficient continuous collision detection algorithm.
Both linear and angular velocities are supported. Convex Objects are sampled using Supporting Vertex.
Motion using Exponential Map.
Future ideas: Comparison with Screwing Motion.
Also comparision with Algebraic CCD and Interval Arithmetic methods (Stephane Redon)
*/
///This low level demo need internal access, and intentionally doesn't include the btBulletCollisionCommon.h headerfile
#include "LinearMath/btQuaternion.h"
#include "LinearMath/btTransform.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "LinearMath/btTransformUtil.h"
#include "DebugCastResult.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btTetrahedronShape.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
#include "GL_ShapeDrawer.h"
#include "ContinuousConvexCollision.h"
#include "GlutStuff.h"
float yaw=0.f,pitch=0.f,roll=0.f;
const int maxNumObjects = 4;
const int numObjects = 2;
btVector3 angVels[numObjects];
btVector3 linVels[numObjects];
btPolyhedralConvexShape* shapePtr[maxNumObjects];
btTransform fromTrans[maxNumObjects];
btTransform toTrans[maxNumObjects];
int screenWidth = 640;
int screenHeight = 480;
int main(int argc,char** argv)
{
btContinuousConvexCollisionDemo* ccdDemo = new btContinuousConvexCollisionDemo();
ccdDemo->setCameraDistance(40.f);
ccdDemo->initPhysics();
return glutmain(argc, argv,screenWidth,screenHeight,"Continuous Convex Collision Demo",ccdDemo);
}
void btContinuousConvexCollisionDemo::initPhysics()
{
fromTrans[0].setOrigin(btVector3(0,10,20));
toTrans[0].setOrigin(btVector3(0,10,-20));
fromTrans[1].setOrigin(btVector3(-2,7,0));
toTrans[1].setOrigin(btVector3(-2,10,0));
btMatrix3x3 identBasis;
identBasis.setIdentity();
btMatrix3x3 basisA;
basisA.setIdentity();
basisA.setEulerZYX(0.f,-SIMD_HALF_PI,0.f);
fromTrans[0].setBasis(identBasis);
toTrans[0].setBasis(basisA);
fromTrans[1].setBasis(identBasis);
toTrans[1].setBasis(identBasis);
toTrans[1].setBasis(identBasis);
btVector3 boxHalfExtentsA(10,1,1);
btVector3 boxHalfExtentsB(1.1f,1.1f,1.1f);
btBoxShape* boxA = new btBoxShape(boxHalfExtentsA);
// btBU_Simplex1to4* boxA = new btBU_Simplex1to4(btPoint3(-2,0,-2),btPoint3(2,0,-2),btPoint3(0,0,2),btPoint3(0,2,0));
// btBU_Simplex1to4* boxA = new btBU_Simplex1to4(btPoint3(-12,0,0),btPoint3(12,0,0));
btBoxShape* boxB = new btBoxShape(boxHalfExtentsB);
// btBU_Simplex1to4 boxB(btPoint3(0,10,0),btPoint3(0,-10,0));
shapePtr[0] = boxA;
shapePtr[1] = boxB;
shapePtr[0]->setMargin(0.01f);
shapePtr[1]->setMargin(0.01f);
for (int i=0;i<numObjects;i++)
{
btTransformUtil::calculateVelocity(fromTrans[i],toTrans[i],1.f,linVels[i],angVels[i]);
}
}
//to be implemented by the demo
void btContinuousConvexCollisionDemo::clientMoveAndDisplay()
{
displayCallback();
}
static btVoronoiSimplexSolver sVoronoiSimplexSolver;
btSimplexSolverInterface& gGjkSimplexSolver = sVoronoiSimplexSolver;
bool drawLine= false;
int minlines = 0;
int maxlines = 512;
void btContinuousConvexCollisionDemo::displayCallback(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDisable(GL_LIGHTING);
//GL_ShapeDrawer::drawCoordSystem();
btScalar m[16];
int i;
btVector3 worldBoundsMin(-1000,-1000,-1000);
btVector3 worldBoundsMax(1000,1000,1000);
/*for (i=0;i<numObjects;i++)
{
fromTrans[i].getOpenGLMatrix( m );
m_shapeDrawer.drawOpenGL(m,shapePtr[i]);
}
*/
if (getDebugMode()==btIDebugDraw::DBG_DrawAabb)
{
i=0;//for (i=1;i<numObjects;i++)
{
//for each object, subdivide the from/to transform in 10 equal steps
int numSubSteps = 10;
for (int s=0;s<10;s++)
{
btScalar subStep = s * 1.f/(float)numSubSteps;
btTransform interpolatedTrans;
btTransformUtil::integrateTransform(fromTrans[i],linVels[i],angVels[i],subStep,interpolatedTrans);
//fromTrans[i].getOpenGLMatrix(m);
//m_shapeDrawer.drawOpenGL(m,shapePtr[i]);
//toTrans[i].getOpenGLMatrix(m);
//m_shapeDrawer.drawOpenGL(m,shapePtr[i]);
interpolatedTrans.getOpenGLMatrix( m );
m_shapeDrawer.drawOpenGL(m,shapePtr[i],btVector3(1,0,1),getDebugMode(),worldBoundsMin,worldBoundsMax);
}
}
}
btMatrix3x3 mat;
mat.setEulerZYX(yaw,pitch,roll);
btQuaternion orn;
mat.getRotation(orn);
orn.setEuler(yaw,pitch,roll);
fromTrans[1].setRotation(orn);
toTrans[1].setRotation(orn);
if (m_stepping || m_singleStep)
{
m_singleStep = false;
pitch += 0.005f;
// yaw += 0.01f;
}
// btVector3 fromA(-25,11,0);
// btVector3 toA(-15,11,0);
// btQuaternion ornFromA(0.f,0.f,0.f,1.f);
// btQuaternion ornToA(0.f,0.f,0.f,1.f);
// btTransform rayFromWorld(ornFromA,fromA);
// btTransform rayToWorld(ornToA,toA);
btTransform rayFromWorld = fromTrans[0];
btTransform rayToWorld = toTrans[0];
if (drawLine)
{
glBegin(GL_LINES);
glColor3f(0, 0, 1);
glVertex3d(rayFromWorld.getOrigin().x(), rayFromWorld.getOrigin().y(),rayFromWorld.getOrigin().z());
glVertex3d(rayToWorld.getOrigin().x(),rayToWorld.getOrigin().y(),rayToWorld.getOrigin().z());
glEnd();
}
//now perform a raycast on the shapes, in local (shape) space
gGjkSimplexSolver.reset();
//choose one of the following lines
for (i=0;i<numObjects;i++)
{
fromTrans[i].getOpenGLMatrix(m);
m_shapeDrawer.drawOpenGL(m,shapePtr[i],btVector3(1,1,1),getDebugMode(),worldBoundsMin,worldBoundsMax);
}
btDebugCastResult rayResult1(fromTrans[0],shapePtr[0],linVels[0],angVels[0],&m_shapeDrawer);
for (i=1;i<numObjects;i++)
{
btConvexCast::CastResult rayResult2;
btConvexCast::CastResult* rayResultPtr;
if (btIDebugDraw::DBG_DrawAabb)
{
rayResultPtr = &rayResult1;
} else
{
rayResultPtr = &rayResult2;
}
//GjkConvexCast convexCaster(&gGjkSimplexSolver);
//SubsimplexConvexCast convexCaster(&gGjkSimplexSolver);
//optional
btConvexPenetrationDepthSolver* penetrationDepthSolver = 0;
btContinuousConvexCollision convexCaster(shapePtr[0],shapePtr[i],&gGjkSimplexSolver,penetrationDepthSolver );
gGjkSimplexSolver.reset();
if (convexCaster.calcTimeOfImpact(fromTrans[0],toTrans[0],fromTrans[i] ,toTrans[i] ,*rayResultPtr))
{
glDisable(GL_DEPTH_TEST);
btTransform hitTrans;
btTransformUtil::integrateTransform(fromTrans[0],linVels[0],angVels[0],rayResultPtr->m_fraction,hitTrans);
hitTrans.getOpenGLMatrix(m);
m_shapeDrawer.drawOpenGL(m,shapePtr[0],btVector3(0,1,0),getDebugMode(),worldBoundsMin,worldBoundsMax);
btTransformUtil::integrateTransform(fromTrans[i],linVels[i],angVels[i],rayResultPtr->m_fraction,hitTrans);
hitTrans.getOpenGLMatrix(m);
m_shapeDrawer.drawOpenGL(m,shapePtr[i],btVector3(0,1,1),getDebugMode(),worldBoundsMin,worldBoundsMax);
}
}
glFlush();
glutSwapBuffers();
}
|