summaryrefslogtreecommitdiff
path: root/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h
blob: 1febc2bc0d68478b05e1799026339a1b6638b01b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  https://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

/// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev
/// Added support for generic constraint solver through getInfo1/getInfo2 methods

/*
2007-09-09
btGeneric6DofConstraint Refactored by Francisco Le?n
email: projectileman@yahoo.com
http://gimpact.sf.net
*/

#ifndef BT_GENERIC_6DOF_CONSTRAINT_H
#define BT_GENERIC_6DOF_CONSTRAINT_H

#include "LinearMath/btVector3.h"
#include "btJacobianEntry.h"
#include "btTypedConstraint.h"

class btRigidBody;

#ifdef BT_USE_DOUBLE_PRECISION
#define btGeneric6DofConstraintData2 btGeneric6DofConstraintDoubleData2
#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintDoubleData2"
#else
#define btGeneric6DofConstraintData2 btGeneric6DofConstraintData
#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintData"
#endif  //BT_USE_DOUBLE_PRECISION

//! Rotation Limit structure for generic joints
class btRotationalLimitMotor
{
public:
	//! limit_parameters
	//!@{
	btScalar m_loLimit;         //!< joint limit
	btScalar m_hiLimit;         //!< joint limit
	btScalar m_targetVelocity;  //!< target motor velocity
	btScalar m_maxMotorForce;   //!< max force on motor
	btScalar m_maxLimitForce;   //!< max force on limit
	btScalar m_damping;         //!< Damping.
	btScalar m_limitSoftness;   //! Relaxation factor
	btScalar m_normalCFM;       //!< Constraint force mixing factor
	btScalar m_stopERP;         //!< Error tolerance factor when joint is at limit
	btScalar m_stopCFM;         //!< Constraint force mixing factor when joint is at limit
	btScalar m_bounce;          //!< restitution factor
	bool m_enableMotor;

	//!@}

	//! temp_variables
	//!@{
	btScalar m_currentLimitError;  //!  How much is violated this limit
	btScalar m_currentPosition;    //!  current value of angle
	int m_currentLimit;            //!< 0=free, 1=at lo limit, 2=at hi limit
	btScalar m_accumulatedImpulse;
	//!@}

	btRotationalLimitMotor()
	{
		m_accumulatedImpulse = 0.f;
		m_targetVelocity = 0;
		m_maxMotorForce = 6.0f;
		m_maxLimitForce = 300.0f;
		m_loLimit = 1.0f;
		m_hiLimit = -1.0f;
		m_normalCFM = 0.f;
		m_stopERP = 0.2f;
		m_stopCFM = 0.f;
		m_bounce = 0.0f;
		m_damping = 1.0f;
		m_limitSoftness = 0.5f;
		m_currentLimit = 0;
		m_currentLimitError = 0;
		m_enableMotor = false;
	}

	btRotationalLimitMotor(const btRotationalLimitMotor& limot)
	{
		m_targetVelocity = limot.m_targetVelocity;
		m_maxMotorForce = limot.m_maxMotorForce;
		m_limitSoftness = limot.m_limitSoftness;
		m_loLimit = limot.m_loLimit;
		m_hiLimit = limot.m_hiLimit;
		m_normalCFM = limot.m_normalCFM;
		m_stopERP = limot.m_stopERP;
		m_stopCFM = limot.m_stopCFM;
		m_bounce = limot.m_bounce;
		m_currentLimit = limot.m_currentLimit;
		m_currentLimitError = limot.m_currentLimitError;
		m_enableMotor = limot.m_enableMotor;
	}

	//! Is limited
	bool isLimited() const
	{
		if (m_loLimit > m_hiLimit) return false;
		return true;
	}

	//! Need apply correction
	bool needApplyTorques() const
	{
		if (m_currentLimit == 0 && m_enableMotor == false) return false;
		return true;
	}

	//! calculates  error
	/*!
	calculates m_currentLimit and m_currentLimitError.
	*/
	int testLimitValue(btScalar test_value);

	//! apply the correction impulses for two bodies
	btScalar solveAngularLimits(btScalar timeStep, btVector3& axis, btScalar jacDiagABInv, btRigidBody* body0, btRigidBody* body1);
};

class btTranslationalLimitMotor
{
public:
	btVector3 m_lowerLimit;  //!< the constraint lower limits
	btVector3 m_upperLimit;  //!< the constraint upper limits
	btVector3 m_accumulatedImpulse;
	//! Linear_Limit_parameters
	//!@{
	btScalar m_limitSoftness;  //!< Softness for linear limit
	btScalar m_damping;        //!< Damping for linear limit
	btScalar m_restitution;    //! Bounce parameter for linear limit
	btVector3 m_normalCFM;     //!< Constraint force mixing factor
	btVector3 m_stopERP;       //!< Error tolerance factor when joint is at limit
	btVector3 m_stopCFM;       //!< Constraint force mixing factor when joint is at limit
							   //!@}
	bool m_enableMotor[3];
	btVector3 m_targetVelocity;     //!< target motor velocity
	btVector3 m_maxMotorForce;      //!< max force on motor
	btVector3 m_currentLimitError;  //!  How much is violated this limit
	btVector3 m_currentLinearDiff;  //!  Current relative offset of constraint frames
	int m_currentLimit[3];          //!< 0=free, 1=at lower limit, 2=at upper limit

	btTranslationalLimitMotor()
	{
		m_lowerLimit.setValue(0.f, 0.f, 0.f);
		m_upperLimit.setValue(0.f, 0.f, 0.f);
		m_accumulatedImpulse.setValue(0.f, 0.f, 0.f);
		m_normalCFM.setValue(0.f, 0.f, 0.f);
		m_stopERP.setValue(0.2f, 0.2f, 0.2f);
		m_stopCFM.setValue(0.f, 0.f, 0.f);

		m_limitSoftness = 0.7f;
		m_damping = btScalar(1.0f);
		m_restitution = btScalar(0.5f);
		for (int i = 0; i < 3; i++)
		{
			m_enableMotor[i] = false;
			m_targetVelocity[i] = btScalar(0.f);
			m_maxMotorForce[i] = btScalar(0.f);
		}
	}

	btTranslationalLimitMotor(const btTranslationalLimitMotor& other)
	{
		m_lowerLimit = other.m_lowerLimit;
		m_upperLimit = other.m_upperLimit;
		m_accumulatedImpulse = other.m_accumulatedImpulse;

		m_limitSoftness = other.m_limitSoftness;
		m_damping = other.m_damping;
		m_restitution = other.m_restitution;
		m_normalCFM = other.m_normalCFM;
		m_stopERP = other.m_stopERP;
		m_stopCFM = other.m_stopCFM;

		for (int i = 0; i < 3; i++)
		{
			m_enableMotor[i] = other.m_enableMotor[i];
			m_targetVelocity[i] = other.m_targetVelocity[i];
			m_maxMotorForce[i] = other.m_maxMotorForce[i];
		}
	}

	//! Test limit
	/*!
    - free means upper < lower,
    - locked means upper == lower
    - limited means upper > lower
    - limitIndex: first 3 are linear, next 3 are angular
    */
	inline bool isLimited(int limitIndex) const
	{
		return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
	}
	inline bool needApplyForce(int limitIndex) const
	{
		if (m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false;
		return true;
	}
	int testLimitValue(int limitIndex, btScalar test_value);

	btScalar solveLinearAxis(
		btScalar timeStep,
		btScalar jacDiagABInv,
		btRigidBody& body1, const btVector3& pointInA,
		btRigidBody& body2, const btVector3& pointInB,
		int limit_index,
		const btVector3& axis_normal_on_a,
		const btVector3& anchorPos);
};

enum bt6DofFlags
{
	BT_6DOF_FLAGS_CFM_NORM = 1,
	BT_6DOF_FLAGS_CFM_STOP = 2,
	BT_6DOF_FLAGS_ERP_STOP = 4
};
#define BT_6DOF_FLAGS_AXIS_SHIFT 3  // bits per axis

/// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
/*!
btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'.
currently this limit supports rotational motors<br>
<ul>
<li> For Linear limits, use btGeneric6DofConstraint.setLinearUpperLimit, btGeneric6DofConstraint.setLinearLowerLimit. You can set the parameters with the btTranslationalLimitMotor structure accsesible through the btGeneric6DofConstraint.getTranslationalLimitMotor method.
At this moment translational motors are not supported. May be in the future. </li>

<li> For Angular limits, use the btRotationalLimitMotor structure for configuring the limit.
This is accessible through btGeneric6DofConstraint.getLimitMotor method,
This brings support for limit parameters and motors. </li>

<li> Angulars limits have these possible ranges:
<table border=1 >
<tr>
	<td><b>AXIS</b></td>
	<td><b>MIN ANGLE</b></td>
	<td><b>MAX ANGLE</b></td>
</tr><tr>
	<td>X</td>
	<td>-PI</td>
	<td>PI</td>
</tr><tr>
	<td>Y</td>
	<td>-PI/2</td>
	<td>PI/2</td>
</tr><tr>
	<td>Z</td>
	<td>-PI</td>
	<td>PI</td>
</tr>
</table>
</li>
</ul>

*/
ATTRIBUTE_ALIGNED16(class)
btGeneric6DofConstraint : public btTypedConstraint
{
protected:
	//! relative_frames
	//!@{
	btTransform m_frameInA;  //!< the constraint space w.r.t body A
	btTransform m_frameInB;  //!< the constraint space w.r.t body B
	//!@}

	//! Jacobians
	//!@{
	btJacobianEntry m_jacLinear[3];  //!< 3 orthogonal linear constraints
	btJacobianEntry m_jacAng[3];     //!< 3 orthogonal angular constraints
	//!@}

	//! Linear_Limit_parameters
	//!@{
	btTranslationalLimitMotor m_linearLimits;
	//!@}

	//! hinge_parameters
	//!@{
	btRotationalLimitMotor m_angularLimits[3];
	//!@}

protected:
	//! temporal variables
	//!@{
	btScalar m_timeStep;
	btTransform m_calculatedTransformA;
	btTransform m_calculatedTransformB;
	btVector3 m_calculatedAxisAngleDiff;
	btVector3 m_calculatedAxis[3];
	btVector3 m_calculatedLinearDiff;
	btScalar m_factA;
	btScalar m_factB;
	bool m_hasStaticBody;

	btVector3 m_AnchorPos;  // point betwen pivots of bodies A and B to solve linear axes

	bool m_useLinearReferenceFrameA;
	bool m_useOffsetForConstraintFrame;

	int m_flags;

	//!@}

	btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other)
	{
		btAssert(0);
		(void)other;
		return *this;
	}

	int setAngularLimits(btConstraintInfo2 * info, int row_offset, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB);

	int setLinearLimits(btConstraintInfo2 * info, int row, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB);

	void buildLinearJacobian(
		btJacobianEntry & jacLinear, const btVector3& normalWorld,
		const btVector3& pivotAInW, const btVector3& pivotBInW);

	void buildAngularJacobian(btJacobianEntry & jacAngular, const btVector3& jointAxisW);

	// tests linear limits
	void calculateLinearInfo();

	//! calcs the euler angles between the two bodies.
	void calculateAngleInfo();

public:
	BT_DECLARE_ALIGNED_ALLOCATOR();

	///for backwards compatibility during the transition to 'getInfo/getInfo2'
	bool m_useSolveConstraintObsolete;

	btGeneric6DofConstraint(btRigidBody & rbA, btRigidBody & rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA);
	btGeneric6DofConstraint(btRigidBody & rbB, const btTransform& frameInB, bool useLinearReferenceFrameB);

	//! Calcs global transform of the offsets
	/*!
	Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies.
	\sa btGeneric6DofConstraint.getCalculatedTransformA , btGeneric6DofConstraint.getCalculatedTransformB, btGeneric6DofConstraint.calculateAngleInfo
	*/
	void calculateTransforms(const btTransform& transA, const btTransform& transB);

	void calculateTransforms();

	//! Gets the global transform of the offset for body A
	/*!
    \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
    */
	const btTransform& getCalculatedTransformA() const
	{
		return m_calculatedTransformA;
	}

	//! Gets the global transform of the offset for body B
	/*!
    \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
    */
	const btTransform& getCalculatedTransformB() const
	{
		return m_calculatedTransformB;
	}

	const btTransform& getFrameOffsetA() const
	{
		return m_frameInA;
	}

	const btTransform& getFrameOffsetB() const
	{
		return m_frameInB;
	}

	btTransform& getFrameOffsetA()
	{
		return m_frameInA;
	}

	btTransform& getFrameOffsetB()
	{
		return m_frameInB;
	}

	//! performs Jacobian calculation, and also calculates angle differences and axis
	virtual void buildJacobian();

	virtual void getInfo1(btConstraintInfo1 * info);

	void getInfo1NonVirtual(btConstraintInfo1 * info);

	virtual void getInfo2(btConstraintInfo2 * info);

	void getInfo2NonVirtual(btConstraintInfo2 * info, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB);

	void updateRHS(btScalar timeStep);

	//! Get the rotation axis in global coordinates
	/*!
	\pre btGeneric6DofConstraint.buildJacobian must be called previously.
	*/
	btVector3 getAxis(int axis_index) const;

	//! Get the relative Euler angle
	/*!
	\pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
	*/
	btScalar getAngle(int axis_index) const;

	//! Get the relative position of the constraint pivot
	/*!
	\pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
	*/
	btScalar getRelativePivotPosition(int axis_index) const;

	void setFrames(const btTransform& frameA, const btTransform& frameB);

	//! Test angular limit.
	/*!
	Calculates angular correction and returns true if limit needs to be corrected.
	\pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
	*/
	bool testAngularLimitMotor(int axis_index);

	void setLinearLowerLimit(const btVector3& linearLower)
	{
		m_linearLimits.m_lowerLimit = linearLower;
	}

	void getLinearLowerLimit(btVector3 & linearLower) const
	{
		linearLower = m_linearLimits.m_lowerLimit;
	}

	void setLinearUpperLimit(const btVector3& linearUpper)
	{
		m_linearLimits.m_upperLimit = linearUpper;
	}

	void getLinearUpperLimit(btVector3 & linearUpper) const
	{
		linearUpper = m_linearLimits.m_upperLimit;
	}

	void setAngularLowerLimit(const btVector3& angularLower)
	{
		for (int i = 0; i < 3; i++)
			m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]);
	}

	void getAngularLowerLimit(btVector3 & angularLower) const
	{
		for (int i = 0; i < 3; i++)
			angularLower[i] = m_angularLimits[i].m_loLimit;
	}

	void setAngularUpperLimit(const btVector3& angularUpper)
	{
		for (int i = 0; i < 3; i++)
			m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]);
	}

	void getAngularUpperLimit(btVector3 & angularUpper) const
	{
		for (int i = 0; i < 3; i++)
			angularUpper[i] = m_angularLimits[i].m_hiLimit;
	}

	//! Retrieves the angular limit informacion
	btRotationalLimitMotor* getRotationalLimitMotor(int index)
	{
		return &m_angularLimits[index];
	}

	//! Retrieves the  limit informacion
	btTranslationalLimitMotor* getTranslationalLimitMotor()
	{
		return &m_linearLimits;
	}

	//first 3 are linear, next 3 are angular
	void setLimit(int axis, btScalar lo, btScalar hi)
	{
		if (axis < 3)
		{
			m_linearLimits.m_lowerLimit[axis] = lo;
			m_linearLimits.m_upperLimit[axis] = hi;
		}
		else
		{
			lo = btNormalizeAngle(lo);
			hi = btNormalizeAngle(hi);
			m_angularLimits[axis - 3].m_loLimit = lo;
			m_angularLimits[axis - 3].m_hiLimit = hi;
		}
	}

	//! Test limit
	/*!
    - free means upper < lower,
    - locked means upper == lower
    - limited means upper > lower
    - limitIndex: first 3 are linear, next 3 are angular
    */
	bool isLimited(int limitIndex) const
	{
		if (limitIndex < 3)
		{
			return m_linearLimits.isLimited(limitIndex);
		}
		return m_angularLimits[limitIndex - 3].isLimited();
	}

	virtual void calcAnchorPos(void);  // overridable

	int get_limit_motor_info2(btRotationalLimitMotor * limot,
							  const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB,
							  btConstraintInfo2* info, int row, btVector3& ax1, int rotational, int rotAllowed = false);

	// access for UseFrameOffset
	bool getUseFrameOffset() const { return m_useOffsetForConstraintFrame; }
	void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; }

	bool getUseLinearReferenceFrameA() const { return m_useLinearReferenceFrameA; }
	void setUseLinearReferenceFrameA(bool linearReferenceFrameA) { m_useLinearReferenceFrameA = linearReferenceFrameA; }

	///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
	///If no axis is provided, it uses the default axis for this constraint.
	virtual void setParam(int num, btScalar value, int axis = -1);
	///return the local value of parameter
	virtual btScalar getParam(int num, int axis = -1) const;

	void setAxis(const btVector3& axis1, const btVector3& axis2);

	virtual int getFlags() const
	{
		return m_flags;
	}

	virtual int calculateSerializeBufferSize() const;

	///fills the dataBuffer and returns the struct name (and 0 on failure)
	virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
};

struct btGeneric6DofConstraintData
{
	btTypedConstraintData m_typeConstraintData;
	btTransformFloatData m_rbAFrame;  // constraint axii. Assumes z is hinge axis.
	btTransformFloatData m_rbBFrame;

	btVector3FloatData m_linearUpperLimit;
	btVector3FloatData m_linearLowerLimit;

	btVector3FloatData m_angularUpperLimit;
	btVector3FloatData m_angularLowerLimit;

	int m_useLinearReferenceFrameA;
	int m_useOffsetForConstraintFrame;
};

struct btGeneric6DofConstraintDoubleData2
{
	btTypedConstraintDoubleData m_typeConstraintData;
	btTransformDoubleData m_rbAFrame;  // constraint axii. Assumes z is hinge axis.
	btTransformDoubleData m_rbBFrame;

	btVector3DoubleData m_linearUpperLimit;
	btVector3DoubleData m_linearLowerLimit;

	btVector3DoubleData m_angularUpperLimit;
	btVector3DoubleData m_angularLowerLimit;

	int m_useLinearReferenceFrameA;
	int m_useOffsetForConstraintFrame;
};

SIMD_FORCE_INLINE int btGeneric6DofConstraint::calculateSerializeBufferSize() const
{
	return sizeof(btGeneric6DofConstraintData2);
}

///fills the dataBuffer and returns the struct name (and 0 on failure)
SIMD_FORCE_INLINE const char* btGeneric6DofConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
{
	btGeneric6DofConstraintData2* dof = (btGeneric6DofConstraintData2*)dataBuffer;
	btTypedConstraint::serialize(&dof->m_typeConstraintData, serializer);

	m_frameInA.serialize(dof->m_rbAFrame);
	m_frameInB.serialize(dof->m_rbBFrame);

	int i;
	for (i = 0; i < 3; i++)
	{
		dof->m_angularLowerLimit.m_floats[i] = m_angularLimits[i].m_loLimit;
		dof->m_angularUpperLimit.m_floats[i] = m_angularLimits[i].m_hiLimit;
		dof->m_linearLowerLimit.m_floats[i] = m_linearLimits.m_lowerLimit[i];
		dof->m_linearUpperLimit.m_floats[i] = m_linearLimits.m_upperLimit[i];
	}

	dof->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA ? 1 : 0;
	dof->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame ? 1 : 0;

	return btGeneric6DofConstraintDataName;
}

#endif  //BT_GENERIC_6DOF_CONSTRAINT_H