summaryrefslogtreecommitdiff
path: root/lib/StaticAnalyzer/Checkers/UninitializedObject/UninitializedPointee.cpp
blob: aead59c7bf87ca1f65b6959d6258459229939b2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
//===----- UninitializedPointee.cpp ------------------------------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines functions and methods for handling pointers and references
// to reduce the size and complexity of UninitializedObjectChecker.cpp.
//
// To read about command line options and documentation about how the checker
// works, refer to UninitializedObjectChecker.h.
//
//===----------------------------------------------------------------------===//

#include "UninitializedObject.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"

using namespace clang;
using namespace clang::ento;

namespace {

/// Represents a pointer or a reference field.
class LocField final : public FieldNode {
  /// We'll store whether the pointee or the pointer itself is uninitialited.
  const bool IsDereferenced;

public:
  LocField(const FieldRegion *FR, const bool IsDereferenced = true)
      : FieldNode(FR), IsDereferenced(IsDereferenced) {}

  virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
    if (IsDereferenced)
      Out << "uninitialized pointee ";
    else
      Out << "uninitialized pointer ";
  }

  virtual void printPrefix(llvm::raw_ostream &Out) const override {}

  virtual void printNode(llvm::raw_ostream &Out) const override {
    Out << getVariableName(getDecl());
  }

  virtual void printSeparator(llvm::raw_ostream &Out) const override {
    if (getDecl()->getType()->isPointerType())
      Out << "->";
    else
      Out << '.';
  }
};

/// Represents a nonloc::LocAsInteger or void* field, that point to objects, but
/// needs to be casted back to its dynamic type for a correct note message.
class NeedsCastLocField final : public FieldNode {
  QualType CastBackType;

public:
  NeedsCastLocField(const FieldRegion *FR, const QualType &T)
      : FieldNode(FR), CastBackType(T) {}

  virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
    Out << "uninitialized pointee ";
  }

  virtual void printPrefix(llvm::raw_ostream &Out) const override {
    // If this object is a nonloc::LocAsInteger.
    if (getDecl()->getType()->isIntegerType())
      Out << "reinterpret_cast";
    // If this pointer's dynamic type is different then it's static type.
    else
      Out << "static_cast";
    Out << '<' << CastBackType.getAsString() << ">(";
  }

  virtual void printNode(llvm::raw_ostream &Out) const override {
    Out << getVariableName(getDecl()) << ')';
  }

  virtual void printSeparator(llvm::raw_ostream &Out) const override {
    Out << "->";
  }
};

/// Represents a Loc field that points to itself.
class CyclicLocField final : public FieldNode {

public:
  CyclicLocField(const FieldRegion *FR) : FieldNode(FR) {}

  virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
    Out << "object references itself ";
  }

  virtual void printPrefix(llvm::raw_ostream &Out) const override {}

  virtual void printNode(llvm::raw_ostream &Out) const override {
    Out << getVariableName(getDecl());
  }

  virtual void printSeparator(llvm::raw_ostream &Out) const override {
    llvm_unreachable("CyclicLocField objects must be the last node of the "
                     "fieldchain!");
  }
};

} // end of anonymous namespace

// Utility function declarations.

struct DereferenceInfo {
  const TypedValueRegion *R;
  const bool NeedsCastBack;
  const bool IsCyclic;
  DereferenceInfo(const TypedValueRegion *R, bool NCB, bool IC)
      : R(R), NeedsCastBack(NCB), IsCyclic(IC) {}
};

/// Dereferences \p FR and returns with the pointee's region, and whether it
/// needs to be casted back to it's location type. If for whatever reason
/// dereferencing fails, returns with None.
static llvm::Optional<DereferenceInfo> dereference(ProgramStateRef State,
                                                   const FieldRegion *FR);

/// Returns whether \p T can be (transitively) dereferenced to a void pointer
/// type (void*, void**, ...).
static bool isVoidPointer(QualType T);

//===----------------------------------------------------------------------===//
//                   Methods for FindUninitializedFields.
//===----------------------------------------------------------------------===//

bool FindUninitializedFields::isDereferencableUninit(
    const FieldRegion *FR, FieldChainInfo LocalChain) {

  SVal V = State->getSVal(FR);

  assert((isDereferencableType(FR->getDecl()->getType()) ||
          V.getAs<nonloc::LocAsInteger>()) &&
         "This method only checks dereferenceable objects!");

  if (V.isUnknown() || V.getAs<loc::ConcreteInt>()) {
    IsAnyFieldInitialized = true;
    return false;
  }

  if (V.isUndef()) {
    return addFieldToUninits(
        LocalChain.add(LocField(FR, /*IsDereferenced*/ false)), FR);
  }

  if (!Opts.CheckPointeeInitialization) {
    IsAnyFieldInitialized = true;
    return false;
  }

  // At this point the pointer itself is initialized and points to a valid
  // location, we'll now check the pointee.
  llvm::Optional<DereferenceInfo> DerefInfo = dereference(State, FR);
  if (!DerefInfo) {
    IsAnyFieldInitialized = true;
    return false;
  }

  if (DerefInfo->IsCyclic)
    return addFieldToUninits(LocalChain.add(CyclicLocField(FR)), FR);

  const TypedValueRegion *R = DerefInfo->R;
  const bool NeedsCastBack = DerefInfo->NeedsCastBack;

  QualType DynT = R->getLocationType();
  QualType PointeeT = DynT->getPointeeType();

  if (PointeeT->isStructureOrClassType()) {
    if (NeedsCastBack)
      return isNonUnionUninit(R, LocalChain.add(NeedsCastLocField(FR, DynT)));
    return isNonUnionUninit(R, LocalChain.add(LocField(FR)));
  }

  if (PointeeT->isUnionType()) {
    if (isUnionUninit(R)) {
      if (NeedsCastBack)
        return addFieldToUninits(LocalChain.add(NeedsCastLocField(FR, DynT)),
                                 R);
      return addFieldToUninits(LocalChain.add(LocField(FR)), R);
    } else {
      IsAnyFieldInitialized = true;
      return false;
    }
  }

  if (PointeeT->isArrayType()) {
    IsAnyFieldInitialized = true;
    return false;
  }

  assert((isPrimitiveType(PointeeT) || isDereferencableType(PointeeT)) &&
         "At this point FR must either have a primitive dynamic type, or it "
         "must be a null, undefined, unknown or concrete pointer!");

  SVal PointeeV = State->getSVal(R);

  if (isPrimitiveUninit(PointeeV)) {
    if (NeedsCastBack)
      return addFieldToUninits(LocalChain.add(NeedsCastLocField(FR, DynT)), R);
    return addFieldToUninits(LocalChain.add(LocField(FR)), R);
  }

  IsAnyFieldInitialized = true;
  return false;
}

//===----------------------------------------------------------------------===//
//                           Utility functions.
//===----------------------------------------------------------------------===//

static llvm::Optional<DereferenceInfo> dereference(ProgramStateRef State,
                                                   const FieldRegion *FR) {

  llvm::SmallSet<const TypedValueRegion *, 5> VisitedRegions;

  SVal V = State->getSVal(FR);
  assert(V.getAsRegion() && "V must have an underlying region!");

  // If the static type of the field is a void pointer, or it is a
  // nonloc::LocAsInteger, we need to cast it back to the dynamic type before
  // dereferencing.
  bool NeedsCastBack = isVoidPointer(FR->getDecl()->getType()) ||
                       V.getAs<nonloc::LocAsInteger>();

  // The region we'd like to acquire.
  const auto *R = V.getAsRegion()->getAs<TypedValueRegion>();
  if (!R)
    return None;

  VisitedRegions.insert(R);

  // We acquire the dynamic type of R,
  QualType DynT = R->getLocationType();

  while (const MemRegion *Tmp = State->getSVal(R, DynT).getAsRegion()) {

    R = Tmp->getAs<TypedValueRegion>();
    if (!R)
      return None;

    // We found a cyclic pointer, like int *ptr = (int *)&ptr.
    if (!VisitedRegions.insert(R).second)
      return DereferenceInfo{R, NeedsCastBack, /*IsCyclic*/ true};

    DynT = R->getLocationType();
    // In order to ensure that this loop terminates, we're also checking the
    // dynamic type of R, since type hierarchy is finite.
    if (isDereferencableType(DynT->getPointeeType()))
      break;
  }

  while (R->getAs<CXXBaseObjectRegion>()) {
    NeedsCastBack = true;

    if (!isa<TypedValueRegion>(R->getSuperRegion()))
      break;
    R = R->getSuperRegion()->getAs<TypedValueRegion>();
  }

  return DereferenceInfo{R, NeedsCastBack, /*IsCyclic*/ false};
}

static bool isVoidPointer(QualType T) {
  while (!T.isNull()) {
    if (T->isVoidPointerType())
      return true;
    T = T->getPointeeType();
  }
  return false;
}