1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
|
/* Whirlpool.java --
Copyright (C) 2001, 2002, 2006 Free Software Foundation, Inc.
This file is a part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package gnu.java.security.hash;
import gnu.java.security.Registry;
import gnu.java.security.util.Util;
/**
* Whirlpool, a new 512-bit hashing function operating on messages less than
* 2 ** 256 bits in length. The function structure is designed according to the
* Wide Trail strategy and permits a wide variety of implementation trade-offs.
* <p>
* This implementation is of Whirlpool Version 3, described in [1] last revised
* on May 24th, 2003.
* <p>
* <b>IMPORTANT</b>: This implementation is not thread-safe.
* <p>
* References:
* <ol>
* <li><a href="http://planeta.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html">
* The WHIRLPOOL Hashing Function</a>.<br>
* <a href="mailto:paulo.barreto@terra.com.br">Paulo S.L.M. Barreto</a> and
* <a href="mailto:vincent.rijmen@iaik.tugraz.at">Vincent Rijmen</a>.</li>
* </ol>
*/
public final class Whirlpool extends BaseHash
{
// Debugging methods and variables
// -------------------------------------------------------------------------
private static final boolean DEBUG = false;
private static final int debuglevel = 3;
// Constants and variables
// -------------------------------------------------------------------------
private static final int BLOCK_SIZE = 64; // inner block size in bytes
/** The digest of the 0-bit long message. */
private static final String DIGEST0 =
"19FA61D75522A4669B44E39C1D2E1726C530232130D407F89AFEE0964997F7A7"
+ "3E83BE698B288FEBCF88E3E03C4F0757EA8964E59B63D93708B138CC42A66EB3";
/** Default number of rounds. */
private static final int R = 10;
/** Whirlpool S-box; p. 19. */
private static final String S_box = // p. 19 [WHIRLPOOL]
"\u1823\uc6E8\u87B8\u014F\u36A6\ud2F5\u796F\u9152" +
"\u60Bc\u9B8E\uA30c\u7B35\u1dE0\ud7c2\u2E4B\uFE57" +
"\u1577\u37E5\u9FF0\u4AdA\u58c9\u290A\uB1A0\u6B85" +
"\uBd5d\u10F4\ucB3E\u0567\uE427\u418B\uA77d\u95d8" +
"\uFBEE\u7c66\udd17\u479E\ucA2d\uBF07\uAd5A\u8333" +
"\u6302\uAA71\uc819\u49d9\uF2E3\u5B88\u9A26\u32B0" +
"\uE90F\ud580\uBEcd\u3448\uFF7A\u905F\u2068\u1AAE" +
"\uB454\u9322\u64F1\u7312\u4008\uc3Ec\udBA1\u8d3d" +
"\u9700\ucF2B\u7682\ud61B\uB5AF\u6A50\u45F3\u30EF" +
"\u3F55\uA2EA\u65BA\u2Fc0\udE1c\uFd4d\u9275\u068A" +
"\uB2E6\u0E1F\u62d4\uA896\uF9c5\u2559\u8472\u394c" +
"\u5E78\u388c\ud1A5\uE261\uB321\u9c1E\u43c7\uFc04" +
"\u5199\u6d0d\uFAdF\u7E24\u3BAB\ucE11\u8F4E\uB7EB" +
"\u3c81\u94F7\uB913\u2cd3\uE76E\uc403\u5644\u7FA9" +
"\u2ABB\uc153\udc0B\u9d6c\u3174\uF646\uAc89\u14E1" +
"\u163A\u6909\u70B6\ud0Ed\ucc42\u98A4\u285c\uF886";
/** The 64-bit lookup tables; section 7.1 p. 13. */
private static final long[] T0 = new long[256];
private static final long[] T1 = new long[256];
private static final long[] T2 = new long[256];
private static final long[] T3 = new long[256];
private static final long[] T4 = new long[256];
private static final long[] T5 = new long[256];
private static final long[] T6 = new long[256];
private static final long[] T7 = new long[256];
/** The round constants. */
private static final long[] rc = new long[R];
/** caches the result of the correctness test, once executed. */
private static Boolean valid;
/** The 512-bit context as 8 longs. */
private long H0, H1, H2, H3, H4, H5, H6, H7;
/** Work area for computing the round key schedule. */
private long k00, k01, k02, k03, k04, k05, k06, k07;
private long Kr0, Kr1, Kr2, Kr3, Kr4, Kr5, Kr6, Kr7;
/** work area for transforming the 512-bit buffer. */
private long n0, n1, n2, n3, n4, n5, n6, n7;
private long nn0, nn1, nn2, nn3, nn4, nn5, nn6, nn7;
/** work area for holding block cipher's intermediate values. */
private long w0, w1, w2, w3, w4, w5, w6, w7;
// Static code - to intialise lookup tables --------------------------------
static
{
long time = System.currentTimeMillis();
int ROOT = 0x11D; // para. 2.1 [WHIRLPOOL]
int i, r, j;
long s1, s2, s4, s5, s8, s9, t;
char c;
final byte[] S = new byte[256];
for (i = 0; i < 256; i++)
{
c = S_box.charAt(i >>> 1);
s1 = ((i & 1) == 0 ? c >>> 8 : c) & 0xFFL;
s2 = s1 << 1;
if (s2 > 0xFFL)
s2 ^= ROOT;
s4 = s2 << 1;
if (s4 > 0xFFL)
s4 ^= ROOT;
s5 = s4 ^ s1;
s8 = s4 << 1;
if (s8 > 0xFFL)
s8 ^= ROOT;
s9 = s8 ^ s1;
T0[i] = t = s1 << 56 | s1 << 48 | s4 << 40 | s1 << 32
| s8 << 24 | s5 << 16 | s2 << 8 | s9;
T1[i] = t >>> 8 | t << 56;
T2[i] = t >>> 16 | t << 48;
T3[i] = t >>> 24 | t << 40;
T4[i] = t >>> 32 | t << 32;
T5[i] = t >>> 40 | t << 24;
T6[i] = t >>> 48 | t << 16;
T7[i] = t >>> 56 | t << 8;
}
for (r = 0, i = 0; r < R; )
rc[r++] = (T0[i++] & 0xFF00000000000000L)
^ (T1[i++] & 0x00FF000000000000L)
^ (T2[i++] & 0x0000FF0000000000L)
^ (T3[i++] & 0x000000FF00000000L)
^ (T4[i++] & 0x00000000FF000000L)
^ (T5[i++] & 0x0000000000FF0000L)
^ (T6[i++] & 0x000000000000FF00L)
^ (T7[i++] & 0x00000000000000FFL);
time = System.currentTimeMillis() - time;
if (DEBUG && debuglevel > 8)
{
System.out.println("==========");
System.out.println();
System.out.println("Static data");
System.out.println();
System.out.println();
System.out.println("T0[]:");
for (i = 0; i < 64; i++)
{
for (j = 0; j < 4; j++)
System.out.print("0x" + Util.toString(T0[i * 4 + j]) + ", ");
System.out.println();
}
System.out.println();
System.out.println("T1[]:");
for (i = 0; i < 64; i++)
{
for (j = 0; j < 4; j++)
System.out.print("0x" + Util.toString(T1[i * 4 + j]) + ", ");
System.out.println();
}
System.out.println();
System.out.println("T2[]:");
for (i = 0; i < 64; i++)
{
for (j = 0; j < 4; j++)
System.out.print("0x" + Util.toString(T2[i * 4 + j]) + ", ");
System.out.println();
}
System.out.println();
System.out.println("T3[]:");
for (i = 0; i < 64; i++)
{
for (j = 0; j < 4; j++)
System.out.print("0x" + Util.toString(T3[i * 4 + j]) + ", ");
System.out.println();
}
System.out.println();
System.out.println("T4[]:");
for (i = 0; i < 64; i++)
{
for (j = 0; j < 4; j++)
System.out.print("0x" + Util.toString(T4[i * 4 + j]) + ", ");
System.out.println();
}
System.out.println();
System.out.println("T5[]:");
for (i = 0; i < 64; i++)
{
for (j = 0; j < 4; j++)
System.out.print("0x" + Util.toString(T5[i * 4 + j]) + ", ");
System.out.println();
}
System.out.println();
System.out.println("T6[]:");
for (i = 0; i < 64; i++)
{
for (j = 0; j < 4; j++)
System.out.print("0x" + Util.toString(T5[i * 4 + j]) + ", ");
System.out.println();
}
System.out.println();
System.out.println("T7[]:");
for (i = 0; i < 64; i++)
{
for (j = 0; j < 4; j++)
System.out.print("0x" + Util.toString(T5[i * 4 + j]) + ", ");
System.out.println();
}
System.out.println();
System.out.println("rc[]:");
for (i = 0; i < R; i++)
System.out.println("0x" + Util.toString(rc[i]));
System.out.println();
System.out.println();
System.out.println("Total initialization time: " + time + " ms.");
System.out.println();
}
}
// Constructor(s)
// -------------------------------------------------------------------------
/** Trivial 0-arguments constructor. */
public Whirlpool()
{
super(Registry.WHIRLPOOL_HASH, 20, BLOCK_SIZE);
}
/**
* <p>Private constructor for cloning purposes.</p>
*
* @param md the instance to clone.
*/
private Whirlpool(Whirlpool md)
{
this();
this.H0 = md.H0;
this.H1 = md.H1;
this.H2 = md.H2;
this.H3 = md.H3;
this.H4 = md.H4;
this.H5 = md.H5;
this.H6 = md.H6;
this.H7 = md.H7;
this.count = md.count;
this.buffer = (byte[]) md.buffer.clone();
}
// Class methods
// -------------------------------------------------------------------------
// Instance methods
// -------------------------------------------------------------------------
// java.lang.Cloneable interface implementation ----------------------------
public Object clone()
{
return (new Whirlpool(this));
}
// Implementation of concrete methods in BaseHash --------------------------
protected void transform(byte[] in, int offset)
{
// apply mu to the input
n0 = (in[offset++] & 0xFFL) << 56
| (in[offset++] & 0xFFL) << 48
| (in[offset++] & 0xFFL) << 40
| (in[offset++] & 0xFFL) << 32
| (in[offset++] & 0xFFL) << 24
| (in[offset++] & 0xFFL) << 16
| (in[offset++] & 0xFFL) << 8
| (in[offset++] & 0xFFL);
n1 = (in[offset++] & 0xFFL) << 56
| (in[offset++] & 0xFFL) << 48
| (in[offset++] & 0xFFL) << 40
| (in[offset++] & 0xFFL) << 32
| (in[offset++] & 0xFFL) << 24
| (in[offset++] & 0xFFL) << 16
| (in[offset++] & 0xFFL) << 8
| (in[offset++] & 0xFFL);
n2 = (in[offset++] & 0xFFL) << 56
| (in[offset++] & 0xFFL) << 48
| (in[offset++] & 0xFFL) << 40
| (in[offset++] & 0xFFL) << 32
| (in[offset++] & 0xFFL) << 24
| (in[offset++] & 0xFFL) << 16
| (in[offset++] & 0xFFL) << 8
| (in[offset++] & 0xFFL);
n3 = (in[offset++] & 0xFFL) << 56
| (in[offset++] & 0xFFL) << 48
| (in[offset++] & 0xFFL) << 40
| (in[offset++] & 0xFFL) << 32
| (in[offset++] & 0xFFL) << 24
| (in[offset++] & 0xFFL) << 16
| (in[offset++] & 0xFFL) << 8
| (in[offset++] & 0xFFL);
n4 = (in[offset++] & 0xFFL) << 56
| (in[offset++] & 0xFFL) << 48
| (in[offset++] & 0xFFL) << 40
| (in[offset++] & 0xFFL) << 32
| (in[offset++] & 0xFFL) << 24
| (in[offset++] & 0xFFL) << 16
| (in[offset++] & 0xFFL) << 8
| (in[offset++] & 0xFFL);
n5 = (in[offset++] & 0xFFL) << 56
| (in[offset++] & 0xFFL) << 48
| (in[offset++] & 0xFFL) << 40
| (in[offset++] & 0xFFL) << 32
| (in[offset++] & 0xFFL) << 24
| (in[offset++] & 0xFFL) << 16
| (in[offset++] & 0xFFL) << 8
| (in[offset++] & 0xFFL);
n6 = (in[offset++] & 0xFFL) << 56
| (in[offset++] & 0xFFL) << 48
| (in[offset++] & 0xFFL) << 40
| (in[offset++] & 0xFFL) << 32
| (in[offset++] & 0xFFL) << 24
| (in[offset++] & 0xFFL) << 16
| (in[offset++] & 0xFFL) << 8
| (in[offset++] & 0xFFL);
n7 = (in[offset++] & 0xFFL) << 56
| (in[offset++] & 0xFFL) << 48
| (in[offset++] & 0xFFL) << 40
| (in[offset++] & 0xFFL) << 32
| (in[offset++] & 0xFFL) << 24
| (in[offset++] & 0xFFL) << 16
| (in[offset++] & 0xFFL) << 8
| (in[offset++] & 0xFFL);
// transform K into the key schedule Kr; 0 <= r <= R
k00 = H0;
k01 = H1;
k02 = H2;
k03 = H3;
k04 = H4;
k05 = H5;
k06 = H6;
k07 = H7;
nn0 = n0 ^ k00;
nn1 = n1 ^ k01;
nn2 = n2 ^ k02;
nn3 = n3 ^ k03;
nn4 = n4 ^ k04;
nn5 = n5 ^ k05;
nn6 = n6 ^ k06;
nn7 = n7 ^ k07;
// intermediate cipher output
w0 = w1 = w2 = w3 = w4 = w5 = w6 = w7 = 0L;
for (int r = 0; r < R; r++)
{
// 1. compute intermediate round key schedule by applying ro[rc]
// to the previous round key schedule --rc being the round constant
Kr0 = T0[(int)((k00 >> 56) & 0xFFL)]
^ T1[(int)((k07 >> 48) & 0xFFL)]
^ T2[(int)((k06 >> 40) & 0xFFL)]
^ T3[(int)((k05 >> 32) & 0xFFL)]
^ T4[(int)((k04 >> 24) & 0xFFL)]
^ T5[(int)((k03 >> 16) & 0xFFL)]
^ T6[(int)((k02 >> 8) & 0xFFL)]
^ T7[(int)( k01 & 0xFFL)] ^ rc[r];
Kr1 = T0[(int)((k01 >> 56) & 0xFFL)]
^ T1[(int)((k00 >> 48) & 0xFFL)]
^ T2[(int)((k07 >> 40) & 0xFFL)]
^ T3[(int)((k06 >> 32) & 0xFFL)]
^ T4[(int)((k05 >> 24) & 0xFFL)]
^ T5[(int)((k04 >> 16) & 0xFFL)]
^ T6[(int)((k03 >> 8) & 0xFFL)]
^ T7[(int)( k02 & 0xFFL)];
Kr2 = T0[(int)((k02 >> 56) & 0xFFL)]
^ T1[(int)((k01 >> 48) & 0xFFL)]
^ T2[(int)((k00 >> 40) & 0xFFL)]
^ T3[(int)((k07 >> 32) & 0xFFL)]
^ T4[(int)((k06 >> 24) & 0xFFL)]
^ T5[(int)((k05 >> 16) & 0xFFL)]
^ T6[(int)((k04 >> 8) & 0xFFL)]
^ T7[(int)( k03 & 0xFFL)];
Kr3 = T0[(int)((k03 >> 56) & 0xFFL)]
^ T1[(int)((k02 >> 48) & 0xFFL)]
^ T2[(int)((k01 >> 40) & 0xFFL)]
^ T3[(int)((k00 >> 32) & 0xFFL)]
^ T4[(int)((k07 >> 24) & 0xFFL)]
^ T5[(int)((k06 >> 16) & 0xFFL)]
^ T6[(int)((k05 >> 8) & 0xFFL)]
^ T7[(int)( k04 & 0xFFL)];
Kr4 = T0[(int)((k04 >> 56) & 0xFFL)]
^ T1[(int)((k03 >> 48) & 0xFFL)]
^ T2[(int)((k02 >> 40) & 0xFFL)]
^ T3[(int)((k01 >> 32) & 0xFFL)]
^ T4[(int)((k00 >> 24) & 0xFFL)]
^ T5[(int)((k07 >> 16) & 0xFFL)]
^ T6[(int)((k06 >> 8) & 0xFFL)]
^ T7[(int)( k05 & 0xFFL)];
Kr5 = T0[(int)((k05 >> 56) & 0xFFL)]
^ T1[(int)((k04 >> 48) & 0xFFL)]
^ T2[(int)((k03 >> 40) & 0xFFL)]
^ T3[(int)((k02 >> 32) & 0xFFL)]
^ T4[(int)((k01 >> 24) & 0xFFL)]
^ T5[(int)((k00 >> 16) & 0xFFL)]
^ T6[(int)((k07 >> 8) & 0xFFL)]
^ T7[(int)( k06 & 0xFFL)];
Kr6 = T0[(int)((k06 >> 56) & 0xFFL)]
^ T1[(int)((k05 >> 48) & 0xFFL)]
^ T2[(int)((k04 >> 40) & 0xFFL)]
^ T3[(int)((k03 >> 32) & 0xFFL)]
^ T4[(int)((k02 >> 24) & 0xFFL)]
^ T5[(int)((k01 >> 16) & 0xFFL)]
^ T6[(int)((k00 >> 8) & 0xFFL)]
^ T7[(int)( k07 & 0xFFL)];
Kr7 = T0[(int)((k07 >> 56) & 0xFFL)]
^ T1[(int)((k06 >> 48) & 0xFFL)]
^ T2[(int)((k05 >> 40) & 0xFFL)]
^ T3[(int)((k04 >> 32) & 0xFFL)]
^ T4[(int)((k03 >> 24) & 0xFFL)]
^ T5[(int)((k02 >> 16) & 0xFFL)]
^ T6[(int)((k01 >> 8) & 0xFFL)]
^ T7[(int)( k00 & 0xFFL)];
k00 = Kr0;
k01 = Kr1;
k02 = Kr2;
k03 = Kr3;
k04 = Kr4;
k05 = Kr5;
k06 = Kr6;
k07 = Kr7;
// 2. incrementally compute the cipher output
w0 = T0[(int)((nn0 >> 56) & 0xFFL)]
^ T1[(int)((nn7 >> 48) & 0xFFL)]
^ T2[(int)((nn6 >> 40) & 0xFFL)]
^ T3[(int)((nn5 >> 32) & 0xFFL)]
^ T4[(int)((nn4 >> 24) & 0xFFL)]
^ T5[(int)((nn3 >> 16) & 0xFFL)]
^ T6[(int)((nn2 >> 8) & 0xFFL)]
^ T7[(int)( nn1 & 0xFFL)] ^ Kr0;
w1 = T0[(int)((nn1 >> 56) & 0xFFL)]
^ T1[(int)((nn0 >> 48) & 0xFFL)]
^ T2[(int)((nn7 >> 40) & 0xFFL)]
^ T3[(int)((nn6 >> 32) & 0xFFL)]
^ T4[(int)((nn5 >> 24) & 0xFFL)]
^ T5[(int)((nn4 >> 16) & 0xFFL)]
^ T6[(int)((nn3 >> 8) & 0xFFL)]
^ T7[(int)( nn2 & 0xFFL)] ^ Kr1;
w2 = T0[(int)((nn2 >> 56) & 0xFFL)]
^ T1[(int)((nn1 >> 48) & 0xFFL)]
^ T2[(int)((nn0 >> 40) & 0xFFL)]
^ T3[(int)((nn7 >> 32) & 0xFFL)]
^ T4[(int)((nn6 >> 24) & 0xFFL)]
^ T5[(int)((nn5 >> 16) & 0xFFL)]
^ T6[(int)((nn4 >> 8) & 0xFFL)]
^ T7[(int)( nn3 & 0xFFL)] ^ Kr2;
w3 = T0[(int)((nn3 >> 56) & 0xFFL)]
^ T1[(int)((nn2 >> 48) & 0xFFL)]
^ T2[(int)((nn1 >> 40) & 0xFFL)]
^ T3[(int)((nn0 >> 32) & 0xFFL)]
^ T4[(int)((nn7 >> 24) & 0xFFL)]
^ T5[(int)((nn6 >> 16) & 0xFFL)]
^ T6[(int)((nn5 >> 8) & 0xFFL)]
^ T7[(int)( nn4 & 0xFFL)] ^ Kr3;
w4 = T0[(int)((nn4 >> 56) & 0xFFL)]
^ T1[(int)((nn3 >> 48) & 0xFFL)]
^ T2[(int)((nn2 >> 40) & 0xFFL)]
^ T3[(int)((nn1 >> 32) & 0xFFL)]
^ T4[(int)((nn0 >> 24) & 0xFFL)]
^ T5[(int)((nn7 >> 16) & 0xFFL)]
^ T6[(int)((nn6 >> 8) & 0xFFL)]
^ T7[(int)( nn5 & 0xFFL)] ^ Kr4;
w5 = T0[(int)((nn5 >> 56) & 0xFFL)]
^ T1[(int)((nn4 >> 48) & 0xFFL)]
^ T2[(int)((nn3 >> 40) & 0xFFL)]
^ T3[(int)((nn2 >> 32) & 0xFFL)]
^ T4[(int)((nn1 >> 24) & 0xFFL)]
^ T5[(int)((nn0 >> 16) & 0xFFL)]
^ T6[(int)((nn7 >> 8) & 0xFFL)]
^ T7[(int)( nn6 & 0xFFL)] ^ Kr5;
w6 = T0[(int)((nn6 >> 56) & 0xFFL)]
^ T1[(int)((nn5 >> 48) & 0xFFL)]
^ T2[(int)((nn4 >> 40) & 0xFFL)]
^ T3[(int)((nn3 >> 32) & 0xFFL)]
^ T4[(int)((nn2 >> 24) & 0xFFL)]
^ T5[(int)((nn1 >> 16) & 0xFFL)]
^ T6[(int)((nn0 >> 8) & 0xFFL)]
^ T7[(int)( nn7 & 0xFFL)] ^ Kr6;
w7 = T0[(int)((nn7 >> 56) & 0xFFL)]
^ T1[(int)((nn6 >> 48) & 0xFFL)]
^ T2[(int)((nn5 >> 40) & 0xFFL)]
^ T3[(int)((nn4 >> 32) & 0xFFL)]
^ T4[(int)((nn3 >> 24) & 0xFFL)]
^ T5[(int)((nn2 >> 16) & 0xFFL)]
^ T6[(int)((nn1 >> 8) & 0xFFL)]
^ T7[(int)( nn0 & 0xFFL)] ^ Kr7;
nn0 = w0;
nn1 = w1;
nn2 = w2;
nn3 = w3;
nn4 = w4;
nn5 = w5;
nn6 = w6;
nn7 = w7;
}
// apply the Miyaguchi-Preneel hash scheme
H0 ^= w0 ^ n0;
H1 ^= w1 ^ n1;
H2 ^= w2 ^ n2;
H3 ^= w3 ^ n3;
H4 ^= w4 ^ n4;
H5 ^= w5 ^ n5;
H6 ^= w6 ^ n6;
H7 ^= w7 ^ n7;
}
protected byte[] padBuffer()
{
// [WHIRLPOOL] p. 6:
// "...padded with a 1-bit, then with as few 0-bits as necessary to
// obtain a bit string whose length is an odd multiple of 256, and
// finally with the 256-bit right-justified binary representation of L."
// in this implementation we use 'count' as the number of bytes hashed
// so far. hence the minimal number of bytes added to the message proper
// are 33 (1 for the 1-bit followed by the 0-bits and the encoding of
// the count framed in a 256-bit block). our formula is then:
// count + 33 + padding = 0 (mod BLOCK_SIZE)
int n = (int)((count + 33) % BLOCK_SIZE);
int padding = n == 0 ? 33 : BLOCK_SIZE - n + 33;
byte[] result = new byte[padding];
// padding is always binary 1 followed by binary 0s
result[0] = (byte) 0x80;
// save (right justified) the number of bits hashed
long bits = count * 8;
int i = padding - 8;
result[i++] = (byte)(bits >>> 56);
result[i++] = (byte)(bits >>> 48);
result[i++] = (byte)(bits >>> 40);
result[i++] = (byte)(bits >>> 32);
result[i++] = (byte)(bits >>> 24);
result[i++] = (byte)(bits >>> 16);
result[i++] = (byte)(bits >>> 8);
result[i ] = (byte) bits;
return result;
}
protected byte[] getResult()
{
// apply inverse mu to the context
byte[] result = new byte[] {
(byte)(H0 >>> 56), (byte)(H0 >>> 48), (byte)(H0 >>> 40), (byte)(H0 >>> 32),
(byte)(H0 >>> 24), (byte)(H0 >>> 16), (byte)(H0 >>> 8), (byte) H0,
(byte)(H1 >>> 56), (byte)(H1 >>> 48), (byte)(H1 >>> 40), (byte)(H1 >>> 32),
(byte)(H1 >>> 24), (byte)(H1 >>> 16), (byte)(H1 >>> 8), (byte) H1,
(byte)(H2 >>> 56), (byte)(H2 >>> 48), (byte)(H2 >>> 40), (byte)(H2 >>> 32),
(byte)(H2 >>> 24), (byte)(H2 >>> 16), (byte)(H2 >>> 8), (byte) H2,
(byte)(H3 >>> 56), (byte)(H3 >>> 48), (byte)(H3 >>> 40), (byte)(H3 >>> 32),
(byte)(H3 >>> 24), (byte)(H3 >>> 16), (byte)(H3 >>> 8), (byte) H3,
(byte)(H4 >>> 56), (byte)(H4 >>> 48), (byte)(H4 >>> 40), (byte)(H4 >>> 32),
(byte)(H4 >>> 24), (byte)(H4 >>> 16), (byte)(H4 >>> 8), (byte) H4,
(byte)(H5 >>> 56), (byte)(H5 >>> 48), (byte)(H5 >>> 40), (byte)(H5 >>> 32),
(byte)(H5 >>> 24), (byte)(H5 >>> 16), (byte)(H5 >>> 8), (byte) H5,
(byte)(H6 >>> 56), (byte)(H6 >>> 48), (byte)(H6 >>> 40), (byte)(H6 >>> 32),
(byte)(H6 >>> 24), (byte)(H6 >>> 16), (byte)(H6 >>> 8), (byte) H6,
(byte)(H7 >>> 56), (byte)(H7 >>> 48), (byte)(H7 >>> 40), (byte)(H7 >>> 32),
(byte)(H7 >>> 24), (byte)(H7 >>> 16), (byte)(H7 >>> 8), (byte) H7
};
return result;
}
protected void resetContext()
{
H0 = H1 = H2 = H3 = H4 = H5 = H6 = H7 = 0L;
}
public boolean selfTest()
{
if (valid == null)
valid = new Boolean(DIGEST0.equals(Util.toString(new Whirlpool().digest())));
return valid.booleanValue();
}
}
|