summaryrefslogtreecommitdiff
path: root/java/awt/geom/Area.java
blob: 7a0fac43a34251fca8bf5a463d387d7ff3ad5ddb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
/* Area.java -- represents a shape built by constructive area geometry
   Copyright (C) 2002, 2004 Free Software Foundation

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */

package java.awt.geom;

import java.awt.Rectangle;
import java.awt.Shape;
import java.util.Vector;


/**
 * The Area class represents any area for the purpose of
 * Constructive Area Geometry (CAG) manipulations. CAG manipulations
 * work as an area-wise form of boolean logic, where the basic operations are:
 * <P><li>Add (in boolean algebra: A <B>or</B> B)<BR>
 * <li>Subtract (in boolean algebra: A <B>and</B> (<B>not</B> B) )<BR>
 * <li>Intersect (in boolean algebra: A <B>and</B> B)<BR>
 * <li>Exclusive Or <BR>
 * <img src="doc-files/Area-1.png" width="342" height="302"
 * alt="Illustration of CAG operations" /><BR>
 * Above is an illustration of the CAG operations on two ring shapes.<P>
 *
 * The contains and intersects() methods are also more accurate than the
 * specification of #Shape requires.<P>
 *
 * Please note that constructing an Area can be slow
 * (Self-intersection resolving is proportional to the square of
 * the number of segments).<P>
 * @see #add(Area)
 * @see #subtract(Area)
 * @see #intersect(Area)
 * @see #exclusiveOr(Area)
 *
 * @author Sven de Marothy (sven@physto.se)
 *
 * @since 1.2
 * @status Works, but could be faster and more reliable.
 */
public class Area implements Shape, Cloneable
{
  /**
   * General numerical precision
   */
  private static final double EPSILON = 1E-11;

  /**
   * recursive subdivision epsilon - (see getRecursionDepth)
   */
  private static final double RS_EPSILON = 1E-13;

  /**
   * Snap distance - points within this distance are considered equal
   */
  private static final double PE_EPSILON = 1E-11;

  /**
   * Segment vectors containing solid areas and holes
   * This is package-private to avoid an accessor method.
   */
  Vector solids;

  /**
   * Segment vectors containing solid areas and holes
   * This is package-private to avoid an accessor method.
   */
  Vector holes;

  /**
   * Vector (temporary) storing curve-curve intersections
   */
  private Vector cc_intersections;

  /**
   * Winding rule WIND_NON_ZERO used, after construction,
   * this is irrelevant.
   */
  private int windingRule;

  /**
   * Constructs an empty Area
   */
  public Area()
  {
    solids = new Vector();
    holes = new Vector();
  }

  /**
   * Constructs an Area from any given Shape. <P>
   *
   * If the Shape is self-intersecting, the created Area will consist
   * of non-self-intersecting subpaths, and any inner paths which
   * are found redundant in accordance with the Shape's winding rule
   * will not be included.
   * 
   * @param s  the shape (<code>null</code> not permitted).
   * 
   * @throws NullPointerException if <code>s</code> is <code>null</code>.
   */
  public Area(Shape s)
  {
    this();

    Vector p = makeSegment(s);

    // empty path
    if (p == null)
      return;

    // delete empty paths
    for (int i = 0; i < p.size(); i++)
      if (((Segment) p.elementAt(i)).getSignedArea() == 0.0)
	p.remove(i--);

    /*
     * Resolve self intersecting paths into non-intersecting
     * solids and holes.
     * Algorithm is as follows:
     * 1: Create nodes at all self intersections
     * 2: Put all segments into a list
     * 3: Grab a segment, follow it, change direction at each node,
     *    removing segments from the list in the process
     * 4: Repeat (3) until no segments remain in the list
     * 5: Remove redundant paths and sort into solids and holes
     */
    Vector paths = new Vector();
    Segment v;

    for (int i = 0; i < p.size(); i++)
      {
	Segment path = (Segment) p.elementAt(i);
	createNodesSelf(path);
      }

    if (p.size() > 1)
      {
	for (int i = 0; i < p.size() - 1; i++)
	  for (int j = i + 1; j < p.size(); j++)
	    {
	      Segment path1 = (Segment) p.elementAt(i);
	      Segment path2 = (Segment) p.elementAt(j);
	      createNodes(path1, path2);
	    }
      }

    // we have intersecting points.
    Vector segments = new Vector();

    for (int i = 0; i < p.size(); i++)
      {
	Segment path = v = (Segment) p.elementAt(i);
	do
	  {
	    segments.add(v);
	    v = v.next;
	  }
	while (v != path);
      }

    paths = weilerAtherton(segments);
    deleteRedundantPaths(paths);
  }

  /**
   * Performs an add (union) operation on this area with another Area.<BR>
   * @param area - the area to be unioned with this one
   */
  public void add(Area area)
  {
    if (equals(area))
      return;
    if (area.isEmpty())
      return;

    Area B = (Area) area.clone();

    Vector pathA = new Vector();
    Vector pathB = new Vector();
    pathA.addAll(solids);
    pathA.addAll(holes);
    pathB.addAll(B.solids);
    pathB.addAll(B.holes);

    int nNodes = 0;

    for (int i = 0; i < pathA.size(); i++)
      {
	Segment a = (Segment) pathA.elementAt(i);
	for (int j = 0; j < pathB.size(); j++)
	  {
	    Segment b = (Segment) pathB.elementAt(j);
	    nNodes += createNodes(a, b);
	  }
      }

    Vector paths = new Vector();
    Segment v;

    // we have intersecting points.
    Vector segments = new Vector();

    // In a union operation, we keep all
    // segments of A oustide B and all B outside A
    for (int i = 0; i < pathA.size(); i++)
      {
	v = (Segment) pathA.elementAt(i);
	Segment path = v;
	do
	  {
	    if (v.isSegmentOutside(area))
	      segments.add(v);
	    v = v.next;
	  }
	while (v != path);
      }

    for (int i = 0; i < pathB.size(); i++)
      {
	v = (Segment) pathB.elementAt(i);
	Segment path = v;
	do
	  {
	    if (v.isSegmentOutside(this))
	      segments.add(v);
	    v = v.next;
	  }
	while (v != path);
      }

    paths = weilerAtherton(segments);
    deleteRedundantPaths(paths);
  }

  /**
   * Performs a subtraction operation on this Area.<BR>
   * @param area the area to be subtracted from this area.
   * @throws NullPointerException if <code>area</code> is <code>null</code>.
   */
  public void subtract(Area area)
  {
    if (isEmpty() || area.isEmpty())
      return;

    if (equals(area))
      {
	reset();
	return;
      }

    Vector pathA = new Vector();
    Area B = (Area) area.clone();
    pathA.addAll(solids);
    pathA.addAll(holes);

    // reverse the directions of B paths.
    setDirection(B.holes, true);
    setDirection(B.solids, false);

    Vector pathB = new Vector();
    pathB.addAll(B.solids);
    pathB.addAll(B.holes);

    int nNodes = 0;

    // create nodes
    for (int i = 0; i < pathA.size(); i++)
      {
	Segment a = (Segment) pathA.elementAt(i);
	for (int j = 0; j < pathB.size(); j++)
	  {
	    Segment b = (Segment) pathB.elementAt(j);
	    nNodes += createNodes(a, b);
	  }
      }

    Vector paths = new Vector();

    // we have intersecting points.
    Vector segments = new Vector();

    // In a subtraction operation, we keep all
    // segments of A oustide B and all B within A
    // We outsideness-test only one segment in each path
    // and the segments before and after any node
    for (int i = 0; i < pathA.size(); i++)
      {
	Segment v = (Segment) pathA.elementAt(i);
	Segment path = v;
	if (v.isSegmentOutside(area) && v.node == null)
	  segments.add(v);
	boolean node = false;
	do
	  {
	    if ((v.node != null || node))
	      {
		node = (v.node != null);
		if (v.isSegmentOutside(area))
		  segments.add(v);
	      }
	    v = v.next;
	  }
	while (v != path);
      }

    for (int i = 0; i < pathB.size(); i++)
      {
	Segment v = (Segment) pathB.elementAt(i);
	Segment path = v;
	if (! v.isSegmentOutside(this) && v.node == null)
	  segments.add(v);
	v = v.next;
	boolean node = false;
	do
	  {
	    if ((v.node != null || node))
	      {
		node = (v.node != null);
		if (! v.isSegmentOutside(this))
		  segments.add(v);
	      }
	    v = v.next;
	  }
	while (v != path);
      }

    paths = weilerAtherton(segments);
    deleteRedundantPaths(paths);
  }

  /**
   * Performs an intersection operation on this Area.<BR>
   * @param area - the area to be intersected with this area.
   * @throws NullPointerException if <code>area</code> is <code>null</code>.
   */
  public void intersect(Area area)
  {
    if (isEmpty() || area.isEmpty())
      {
	reset();
	return;
      }
    if (equals(area))
      return;

    Vector pathA = new Vector();
    Area B = (Area) area.clone();
    pathA.addAll(solids);
    pathA.addAll(holes);

    Vector pathB = new Vector();
    pathB.addAll(B.solids);
    pathB.addAll(B.holes);

    int nNodes = 0;

    // create nodes
    for (int i = 0; i < pathA.size(); i++)
      {
	Segment a = (Segment) pathA.elementAt(i);
	for (int j = 0; j < pathB.size(); j++)
	  {
	    Segment b = (Segment) pathB.elementAt(j);
	    nNodes += createNodes(a, b);
	  }
      }

    Vector paths = new Vector();

    // we have intersecting points.
    Vector segments = new Vector();

    // In an intersection operation, we keep all
    // segments of A within B and all B within A
    // (The rest must be redundant)
    // We outsideness-test only one segment in each path
    // and the segments before and after any node
    for (int i = 0; i < pathA.size(); i++)
      {
	Segment v = (Segment) pathA.elementAt(i);
	Segment path = v;
	if (! v.isSegmentOutside(area) && v.node == null)
	  segments.add(v);
	boolean node = false;
	do
	  {
	    if ((v.node != null || node))
	      {
		node = (v.node != null);
		if (! v.isSegmentOutside(area))
		  segments.add(v);
	      }
	    v = v.next;
	  }
	while (v != path);
      }

    for (int i = 0; i < pathB.size(); i++)
      {
	Segment v = (Segment) pathB.elementAt(i);
	Segment path = v;
	if (! v.isSegmentOutside(this) && v.node == null)
	  segments.add(v);
	v = v.next;
	boolean node = false;
	do
	  {
	    if ((v.node != null || node))
	      {
		node = (v.node != null);
		if (! v.isSegmentOutside(this))
		  segments.add(v);
	      }
	    v = v.next;
	  }
	while (v != path);
      }

    paths = weilerAtherton(segments);
    deleteRedundantPaths(paths);
  }

  /**
   * Performs an exclusive-or operation on this Area.<BR>
   * @param area - the area to be XORed with this area.
   * @throws NullPointerException if <code>area</code> is <code>null</code>.
   */
  public void exclusiveOr(Area area)
  {
    if (area.isEmpty())
      return;

    if (isEmpty())
      {
	Area B = (Area) area.clone();
	solids = B.solids;
	holes = B.holes;
	return;
      }
    if (equals(area))
      {
	reset();
	return;
      }

    Vector pathA = new Vector();

    Area B = (Area) area.clone();
    Vector pathB = new Vector();
    pathA.addAll(solids);
    pathA.addAll(holes);

    // reverse the directions of B paths.
    setDirection(B.holes, true);
    setDirection(B.solids, false);
    pathB.addAll(B.solids);
    pathB.addAll(B.holes);

    int nNodes = 0;

    for (int i = 0; i < pathA.size(); i++)
      {
	Segment a = (Segment) pathA.elementAt(i);
	for (int j = 0; j < pathB.size(); j++)
	  {
	    Segment b = (Segment) pathB.elementAt(j);
	    nNodes += createNodes(a, b);
	  }
      }

    Vector paths = new Vector();
    Segment v;

    // we have intersecting points.
    Vector segments = new Vector();

    // In an XOR operation, we operate on all segments
    for (int i = 0; i < pathA.size(); i++)
      {
	v = (Segment) pathA.elementAt(i);
	Segment path = v;
	do
	  {
	    segments.add(v);
	    v = v.next;
	  }
	while (v != path);
      }

    for (int i = 0; i < pathB.size(); i++)
      {
	v = (Segment) pathB.elementAt(i);
	Segment path = v;
	do
	  {
	    segments.add(v);
	    v = v.next;
	  }
	while (v != path);
      }

    paths = weilerAtherton(segments);
    deleteRedundantPaths(paths);
  }

  /**
   * Clears the Area object, creating an empty area.
   */
  public void reset()
  {
    solids = new Vector();
    holes = new Vector();
  }

  /**
   * Returns whether this area encloses any area.
   * @return true if the object encloses any area.
   */
  public boolean isEmpty()
  {
    if (solids.size() == 0)
      return true;

    double totalArea = 0;
    for (int i = 0; i < solids.size(); i++)
      totalArea += Math.abs(((Segment) solids.elementAt(i)).getSignedArea());
    for (int i = 0; i < holes.size(); i++)
      totalArea -= Math.abs(((Segment) holes.elementAt(i)).getSignedArea());
    if (totalArea <= EPSILON)
      return true;

    return false;
  }

  /**
   * Determines whether the Area consists entirely of line segments
   * @return true if the Area lines-only, false otherwise
   */
  public boolean isPolygonal()
  {
    for (int i = 0; i < holes.size(); i++)
      if (! ((Segment) holes.elementAt(i)).isPolygonal())
	return false;
    for (int i = 0; i < solids.size(); i++)
      if (! ((Segment) solids.elementAt(i)).isPolygonal())
	return false;
    return true;
  }

  /**
   * Determines if the Area is rectangular.<P>
   *
   * This is strictly qualified. An area is considered rectangular if:<BR>
   * <li>It consists of a single polygonal path.<BR>
   * <li>It is oriented parallel/perpendicular to the xy axis<BR>
   * <li>It must be exactly rectangular, i.e. small errors induced by
   * transformations may cause a false result, although the area is
   * visibly rectangular.<P>
   * @return true if the above criteria are met, false otherwise
   */
  public boolean isRectangular()
  {
    if (isEmpty())
      return true;

    if (holes.size() != 0 || solids.size() != 1)
      return false;

    Segment path = (Segment) solids.elementAt(0);
    if (! path.isPolygonal())
      return false;

    int nCorners = 0;
    Segment s = path;
    do
      {
	Segment s2 = s.next;
	double d1 = (s.P2.getX() - s.P1.getX())*(s2.P2.getX() - s2.P1.getX())/
	    ((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2)));
	double d2 = (s.P2.getY() - s.P1.getY())*(s2.P2.getY() - s2.P1.getY())/ 
	    ((s.P1.distance(s.P2)) * (s2.P1.distance(s2.P2)));
	double dotproduct = d1 + d2;

	// For some reason, only rectangles on the XY axis count.
	if (d1 != 0 && d2 != 0)
	  return false;

	if (Math.abs(dotproduct) == 0) // 90 degree angle
	  nCorners++;
	else if ((Math.abs(1.0 - dotproduct) > 0)) // 0 degree angle?
	  return false; // if not, return false

	s = s.next;
      }
    while (s != path);

    return nCorners == 4;
  }

  /**
   * Returns whether the Area consists of more than one simple
   * (non self-intersecting) subpath.
   *
   * @return true if the Area consists of none or one simple subpath,
   * false otherwise.
   */
  public boolean isSingular()
  {
    return (holes.size() == 0 && solids.size() <= 1);
  }

  /**
   * Returns the bounding box of the Area.<P> Unlike the CubicCurve2D and
   * QuadraticCurve2D classes, this method will return the tightest possible
   * bounding box, evaluating the extreme points of each curved segment.<P>
   * @return the bounding box
   */
  public Rectangle2D getBounds2D()
  {
    if (solids.size() == 0)
      return new Rectangle2D.Double(0.0, 0.0, 0.0, 0.0);

    double xmin;
    double xmax;
    double ymin;
    double ymax;
    xmin = xmax = ((Segment) solids.elementAt(0)).P1.getX();
    ymin = ymax = ((Segment) solids.elementAt(0)).P1.getY();

    for (int path = 0; path < solids.size(); path++)
      {
	Rectangle2D r = ((Segment) solids.elementAt(path)).getPathBounds();
	xmin = Math.min(r.getMinX(), xmin);
	ymin = Math.min(r.getMinY(), ymin);
	xmax = Math.max(r.getMaxX(), xmax);
	ymax = Math.max(r.getMaxY(), ymax);
      }

    return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
  }

  /**
   * Returns the bounds of this object in Rectangle format.
   * Please note that this may lead to loss of precision.
   * 
   * @return The bounds.
   * @see #getBounds2D()
   */
  public Rectangle getBounds()
  {
    return getBounds2D().getBounds();
  }

  /**
   * Create a new area of the same run-time type with the same contents as
   * this one.
   *
   * @return the clone
   */
  public Object clone()
  {
    try
      {
	Area clone = new Area();
	for (int i = 0; i < solids.size(); i++)
	  clone.solids.add(((Segment) solids.elementAt(i)).cloneSegmentList());
	for (int i = 0; i < holes.size(); i++)
	  clone.holes.add(((Segment) holes.elementAt(i)).cloneSegmentList());
	return clone;
      }
    catch (CloneNotSupportedException e)
      {
	throw (Error) new InternalError().initCause(e); // Impossible
      }
  }

  /**
   * Compares two Areas.
   * 
   * @param area  the area to compare against this area (<code>null</code>
   *              permitted).
   * @return <code>true</code> if the areas are equal, and <code>false</code>
   *         otherwise.
   */
  public boolean equals(Area area)
  {
    if (area == null)
      return false;

    if (! getBounds2D().equals(area.getBounds2D()))
      return false;

    if (solids.size() != area.solids.size()
        || holes.size() != area.holes.size())
      return false;

    Vector pathA = new Vector();
    pathA.addAll(solids);
    pathA.addAll(holes);
    Vector pathB = new Vector();
    pathB.addAll(area.solids);
    pathB.addAll(area.holes);

    int nPaths = pathA.size();
    boolean[][] match = new boolean[2][nPaths];

    for (int i = 0; i < nPaths; i++)
      {
	for (int j = 0; j < nPaths; j++)
	  {
	    Segment p1 = (Segment) pathA.elementAt(i);
	    Segment p2 = (Segment) pathB.elementAt(j);
	    if (! match[0][i] && ! match[1][j])
	      if (p1.pathEquals(p2))
		match[0][i] = match[1][j] = true;
	  }
      }

    boolean result = true;
    for (int i = 0; i < nPaths; i++)
      result = result && match[0][i] && match[1][i];
    return result;
  }

  /**
   * Transforms this area by the AffineTransform at.
   * 
   * @param at  the transform.
   */
  public void transform(AffineTransform at)
  {
    for (int i = 0; i < solids.size(); i++)
      ((Segment) solids.elementAt(i)).transformSegmentList(at);
    for (int i = 0; i < holes.size(); i++)
      ((Segment) holes.elementAt(i)).transformSegmentList(at);

    // Note that the orientation is not invariant under inversion
    if ((at.getType() & AffineTransform.TYPE_FLIP) != 0)
      {
	setDirection(holes, false);
	setDirection(solids, true);
      }
  }

  /**
   * Returns a new Area equal to this one, transformed
   * by the AffineTransform at.
   * @param at  the transform.
   * @return the transformed area
   * @throws NullPointerException if <code>at</code> is <code>null</code>.
   */
  public Area createTransformedArea(AffineTransform at)
  {
    Area a = (Area) clone();
    a.transform(at);
    return a;
  }

  /**
   * Determines if the point (x,y) is contained within this Area.
   *
   * @param x the x-coordinate of the point.
   * @param y the y-coordinate of the point.
   * @return true if the point is contained, false otherwise.
   */
  public boolean contains(double x, double y)
  {
    int n = 0;
    for (int i = 0; i < solids.size(); i++)
      if (((Segment) solids.elementAt(i)).contains(x, y))
	n++;

    for (int i = 0; i < holes.size(); i++)
      if (((Segment) holes.elementAt(i)).contains(x, y))
	n--;

    return (n != 0);
  }

  /**
   * Determines if the Point2D p is contained within this Area.
   *
   * @param p the point.
   * @return <code>true</code> if the point is contained, <code>false</code> 
   *         otherwise.
   * @throws NullPointerException if <code>p</code> is <code>null</code>.
   */
  public boolean contains(Point2D p)
  {
    return contains(p.getX(), p.getY());
  }

  /**
   * Determines if the rectangle specified by (x,y) as the upper-left
   * and with width w and height h is completely contained within this Area,
   * returns false otherwise.<P>
   *
   * This method should always produce the correct results, unlike for other
   * classes in geom.
   * 
   * @param x the x-coordinate of the rectangle.
   * @param y the y-coordinate of the rectangle.
   * @param w the width of the the rectangle.
   * @param h the height of the rectangle.
   * @return <code>true</code> if the rectangle is considered contained
   */
  public boolean contains(double x, double y, double w, double h)
  {
    LineSegment[] l = new LineSegment[4];
    l[0] = new LineSegment(x, y, x + w, y);
    l[1] = new LineSegment(x, y + h, x + w, y + h);
    l[2] = new LineSegment(x, y, x, y + h);
    l[3] = new LineSegment(x + w, y, x + w, y + h);

    // Since every segment in the area must a contour
    // between inside/outside segments, ANY intersection
    // will mean the rectangle is not entirely contained.
    for (int i = 0; i < 4; i++)
      {
	for (int path = 0; path < solids.size(); path++)
	  {
	    Segment v;
	    Segment start;
	    start = v = (Segment) solids.elementAt(path);
	    do
	      {
		if (l[i].hasIntersections(v))
		  return false;
		v = v.next;
	      }
	    while (v != start);
	  }
	for (int path = 0; path < holes.size(); path++)
	  {
	    Segment v;
	    Segment start;
	    start = v = (Segment) holes.elementAt(path);
	    do
	      {
		if (l[i].hasIntersections(v))
		  return false;
		v = v.next;
	      }
	    while (v != start);
	  }
      }

    // Is any point inside?
    if (! contains(x, y))
      return false;

    // Final hoop: Is the rectangle non-intersecting and inside, 
    // but encloses a hole?
    Rectangle2D r = new Rectangle2D.Double(x, y, w, h);
    for (int path = 0; path < holes.size(); path++)
      if (! ((Segment) holes.elementAt(path)).isSegmentOutside(r))
        return false;

    return true;
  }

  /**
   * Determines if the Rectangle2D specified by r is completely contained
   * within this Area, returns false otherwise.<P>
   *
   * This method should always produce the correct results, unlike for other
   * classes in geom.
   * 
   * @param r the rectangle.
   * @return <code>true</code> if the rectangle is considered contained
   * 
   * @throws NullPointerException if <code>r</code> is <code>null</code>.
   */
  public boolean contains(Rectangle2D r)
  {
    return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
  }

  /**
   * Determines if the rectangle specified by (x,y) as the upper-left
   * and with width w and height h intersects any part of this Area.
   * 
   * @param x  the x-coordinate for the rectangle.
   * @param y  the y-coordinate for the rectangle.
   * @param w  the width of the rectangle.
   * @param h  the height of the rectangle.
   * @return <code>true</code> if the rectangle intersects the area, 
   *         <code>false</code> otherwise.
   */
  public boolean intersects(double x, double y, double w, double h)
  {
    if (solids.size() == 0)
      return false;

    LineSegment[] l = new LineSegment[4];
    l[0] = new LineSegment(x, y, x + w, y);
    l[1] = new LineSegment(x, y + h, x + w, y + h);
    l[2] = new LineSegment(x, y, x, y + h);
    l[3] = new LineSegment(x + w, y, x + w, y + h);

    // Return true on any intersection
    for (int i = 0; i < 4; i++)
      {
	for (int path = 0; path < solids.size(); path++)
	  {
	    Segment v;
	    Segment start;
	    start = v = (Segment) solids.elementAt(path);
	    do
	      {
		if (l[i].hasIntersections(v))
		  return true;
		v = v.next;
	      }
	    while (v != start);
	  }
	for (int path = 0; path < holes.size(); path++)
	  {
	    Segment v;
	    Segment start;
	    start = v = (Segment) holes.elementAt(path);
	    do
	      {
		if (l[i].hasIntersections(v))
		  return true;
		v = v.next;
	      }
	    while (v != start);
	  }
      }

    // Non-intersecting, Is any point inside?
    if (contains(x + w * 0.5, y + h * 0.5))
      return true;

    // What if the rectangle encloses the whole shape?
    Point2D p = ((Segment) solids.elementAt(0)).getMidPoint();
    if ((new Rectangle2D.Double(x, y, w, h)).contains(p))
      return true;
    return false;
  }

  /**
   * Determines if the Rectangle2D specified by r intersects any
   * part of this Area.
   * @param r  the rectangle to test intersection with (<code>null</code>
   *           not permitted).
   * @return <code>true</code> if the rectangle intersects the area, 
   *         <code>false</code> otherwise.
   * @throws NullPointerException if <code>r</code> is <code>null</code>.
   */
  public boolean intersects(Rectangle2D r)
  {
    return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
  }

  /**
   * Returns a PathIterator object defining the contour of this Area,
   * transformed by at.
   * 
   * @param at  the transform.
   * @return A path iterator.
   */
  public PathIterator getPathIterator(AffineTransform at)
  {
    return (new AreaIterator(at));
  }

  /**
   * Returns a flattened PathIterator object defining the contour of this
   * Area, transformed by at and with a defined flatness.
   * 
   * @param at  the transform.
   * @param flatness the flatness.
   * @return A path iterator.
   */
  public PathIterator getPathIterator(AffineTransform at, double flatness)
  {
    return new FlatteningPathIterator(getPathIterator(at), flatness);
  }

  //---------------------------------------------------------------------
  // Non-public methods and classes 

  /**
   * Private pathiterator object.
   */
  private class AreaIterator implements PathIterator
  {
    private Vector segments;
    private int index;
    private AffineTransform at;

    // Simple compound type for segments
    class IteratorSegment
    {
      int type;
      double[] coords;

      IteratorSegment()
      {
	coords = new double[6];
      }
    }

    /**
     * The contructor here does most of the work,
     * creates a vector of IteratorSegments, which can
     * readily be returned
     */
    public AreaIterator(AffineTransform at)
    {
      this.at = at;
      index = 0;
      segments = new Vector();
      Vector allpaths = new Vector();
      allpaths.addAll(solids);
      allpaths.addAll(holes);

      for (int i = 0; i < allpaths.size(); i++)
        {
	  Segment v = (Segment) allpaths.elementAt(i);
	  Segment start = v;

	  IteratorSegment is = new IteratorSegment();
	  is.type = SEG_MOVETO;
	  is.coords[0] = start.P1.getX();
	  is.coords[1] = start.P1.getY();
	  segments.add(is);

	  do
	    {
	      is = new IteratorSegment();
	      is.type = v.pathIteratorFormat(is.coords);
	      segments.add(is);
	      v = v.next;
	    }
	  while (v != start);

	  is = new IteratorSegment();
	  is.type = SEG_CLOSE;
	  segments.add(is);
        }
    }

    public int currentSegment(double[] coords)
    {
      IteratorSegment s = (IteratorSegment) segments.elementAt(index);
      if (at != null)
	at.transform(s.coords, 0, coords, 0, 3);
      else
	for (int i = 0; i < 6; i++)
	  coords[i] = s.coords[i];
      return (s.type);
    }

    public int currentSegment(float[] coords)
    {
      IteratorSegment s = (IteratorSegment) segments.elementAt(index);
      double[] d = new double[6];
      if (at != null)
        {
	  at.transform(s.coords, 0, d, 0, 3);
	  for (int i = 0; i < 6; i++)
	    coords[i] = (float) d[i];
        }
      else
	for (int i = 0; i < 6; i++)
	  coords[i] = (float) s.coords[i];
      return (s.type);
    }

    // Note that the winding rule should not matter here,
    // EVEN_ODD is chosen because it renders faster.
    public int getWindingRule()
    {
      return (PathIterator.WIND_EVEN_ODD);
    }

    public boolean isDone()
    {
      return (index >= segments.size());
    }

    public void next()
    {
      index++;
    }
  }

  /**
   * Performs the fundamental task of the Weiler-Atherton algorithm,
   * traverse a list of segments, for each segment:
   * Follow it, removing segments from the list and switching paths
   * at each node. Do so until the starting segment is reached.
   *
   * Returns a Vector of the resulting paths.
   */
  private Vector weilerAtherton(Vector segments)
  {
    Vector paths = new Vector();
    while (segments.size() > 0)
      {
	// Iterate over the path
	Segment start = (Segment) segments.elementAt(0);
	Segment s = start;
	do
	  {
	    segments.remove(s);
	    if (s.node != null)
	      { // switch over
		s.next = s.node;
		s.node = null;
	      }
	    s = s.next; // continue
	  }
	while (s != start);

	paths.add(start);
      }
    return paths;
  }

  /**
   * A small wrapper class to store intersection points
   */
  private class Intersection
  {
    Point2D p; // the 2D point of intersection
    double ta; // the parametric value on a
    double tb; // the parametric value on b
    Segment seg; // segment placeholder for node setting

    public Intersection(Point2D p, double ta, double tb)
    {
      this.p = p;
      this.ta = ta;
      this.tb = tb;
    }
  }

  /**
   * Returns the recursion depth necessary to approximate the
   * curve by line segments within the error RS_EPSILON.
   *
   * This is done with Wang's formula:
   * L0 = max{0<=i<=N-2}(|xi - 2xi+1 + xi+2|,|yi - 2yi+1 + yi+2|)
   * r0 = log4(sqrt(2)*N*(N-1)*L0/8e)
   * Where e is the maximum distance error (RS_EPSILON)
   */
  private int getRecursionDepth(CubicSegment curve)
  {
    double x0 = curve.P1.getX();
    double y0 = curve.P1.getY();

    double x1 = curve.cp1.getX();
    double y1 = curve.cp1.getY();

    double x2 = curve.cp2.getX();
    double y2 = curve.cp2.getY();

    double x3 = curve.P2.getX();
    double y3 = curve.P2.getY();

    double L0 = Math.max(Math.max(Math.abs(x0 - 2 * x1 + x2),
                                  Math.abs(x1 - 2 * x2 + x3)),
                         Math.max(Math.abs(y0 - 2 * y1 + y2),
                                  Math.abs(y1 - 2 * y2 + y3)));

    double f = Math.sqrt(2) * 6.0 * L0 / (8.0 * RS_EPSILON);

    int r0 = (int) Math.ceil(Math.log(f) / Math.log(4.0));
    return (r0);
  }

  /**
   * Performs recursive subdivision:
   * @param c1 - curve 1
   * @param c2 - curve 2
   * @param depth1 - recursion depth of curve 1
   * @param depth2 - recursion depth of curve 2
   * @param t1 - global parametric value of the first curve's starting point
   * @param t2 - global parametric value of the second curve's starting point
   * @param w1 - global parametric length of curve 1
   * @param c1 - global parametric length of curve 2
   *
   * The final four parameters are for keeping track of the parametric
   * value of the curve. For a full curve t = 0, w = 1, w is halved with
   * each subdivision.
   */
  private void recursiveSubdivide(CubicCurve2D c1, CubicCurve2D c2,
                                  int depth1, int depth2, double t1,
                                  double t2, double w1, double w2)
  {
    boolean flat1 = depth1 <= 0;
    boolean flat2 = depth2 <= 0;

    if (flat1 && flat2)
      {
	double xlk = c1.getP2().getX() - c1.getP1().getX();
	double ylk = c1.getP2().getY() - c1.getP1().getY();

	double xnm = c2.getP2().getX() - c2.getP1().getX();
	double ynm = c2.getP2().getY() - c2.getP1().getY();

	double xmk = c2.getP1().getX() - c1.getP1().getX();
	double ymk = c2.getP1().getY() - c1.getP1().getY();
	double det = xnm * ylk - ynm * xlk;

	if (det + 1.0 == 1.0)
	  return;

	double detinv = 1.0 / det;
	double s = (xnm * ymk - ynm * xmk) * detinv;
	double t = (xlk * ymk - ylk * xmk) * detinv;
	if ((s < 0.0) || (s > 1.0) || (t < 0.0) || (t > 1.0))
	  return;

	double[] temp = new double[2];
	temp[0] = t1 + s * w1;
	temp[1] = t2 + t * w1;
	cc_intersections.add(temp);
	return;
      }

    CubicCurve2D.Double c11 = new CubicCurve2D.Double();
    CubicCurve2D.Double c12 = new CubicCurve2D.Double();
    CubicCurve2D.Double c21 = new CubicCurve2D.Double();
    CubicCurve2D.Double c22 = new CubicCurve2D.Double();

    if (! flat1 && ! flat2)
      {
	depth1--;
	depth2--;
	w1 = w1 * 0.5;
	w2 = w2 * 0.5;
	c1.subdivide(c11, c12);
	c2.subdivide(c21, c22);
	if (c11.getBounds2D().intersects(c21.getBounds2D()))
	  recursiveSubdivide(c11, c21, depth1, depth2, t1, t2, w1, w2);
	if (c11.getBounds2D().intersects(c22.getBounds2D()))
	  recursiveSubdivide(c11, c22, depth1, depth2, t1, t2 + w2, w1, w2);
	if (c12.getBounds2D().intersects(c21.getBounds2D()))
	  recursiveSubdivide(c12, c21, depth1, depth2, t1 + w1, t2, w1, w2);
	if (c12.getBounds2D().intersects(c22.getBounds2D()))
	  recursiveSubdivide(c12, c22, depth1, depth2, t1 + w1, t2 + w2, w1, w2);
	return;
      }

    if (! flat1)
      {
	depth1--;
	c1.subdivide(c11, c12);
	w1 = w1 * 0.5;
	if (c11.getBounds2D().intersects(c2.getBounds2D()))
	  recursiveSubdivide(c11, c2, depth1, depth2, t1, t2, w1, w2);
	if (c12.getBounds2D().intersects(c2.getBounds2D()))
	  recursiveSubdivide(c12, c2, depth1, depth2, t1 + w1, t2, w1, w2);
	return;
      }

    depth2--;
    c2.subdivide(c21, c22);
    w2 = w2 * 0.5;
    if (c1.getBounds2D().intersects(c21.getBounds2D()))
      recursiveSubdivide(c1, c21, depth1, depth2, t1, t2, w1, w2);
    if (c1.getBounds2D().intersects(c22.getBounds2D()))
      recursiveSubdivide(c1, c22, depth1, depth2, t1, t2 + w2, w1, w2);
  }

  /**
   * Returns a set of interesections between two Cubic segments
   * Or null if no intersections were found.
   *
   * The method used to find the intersection is recursive midpoint
   * subdivision. Outline description:
   *
   * 1) Check if the bounding boxes of the curves intersect,
   * 2) If so, divide the curves in the middle and test the bounding
   * boxes again,
   * 3) Repeat until a maximum recursion depth has been reached, where
   * the intersecting curves can be approximated by line segments.
   *
   * This is a reasonably accurate method, although the recursion depth
   * is typically around 20, the bounding-box tests allow for significant
   * pruning of the subdivision tree.
   * 
   * This is package-private to avoid an accessor method.
   */
  Intersection[] cubicCubicIntersect(CubicSegment curve1, CubicSegment curve2)
  {
    Rectangle2D r1 = curve1.getBounds();
    Rectangle2D r2 = curve2.getBounds();

    if (! r1.intersects(r2))
      return null;

    cc_intersections = new Vector();
    recursiveSubdivide(curve1.getCubicCurve2D(), curve2.getCubicCurve2D(),
                       getRecursionDepth(curve1), getRecursionDepth(curve2),
                       0.0, 0.0, 1.0, 1.0);

    if (cc_intersections.size() == 0)
      return null;

    Intersection[] results = new Intersection[cc_intersections.size()];
    for (int i = 0; i < cc_intersections.size(); i++)
      {
	double[] temp = (double[]) cc_intersections.elementAt(i);
	results[i] = new Intersection(curve1.evaluatePoint(temp[0]), temp[0],
	                              temp[1]);
      }
    cc_intersections = null;
    return (results);
  }

  /**
   * Returns the intersections between a line and a quadratic bezier
   * Or null if no intersections are found1
   * This is done through combining the line's equation with the
   * parametric form of the Bezier and solving the resulting quadratic.
   * This is package-private to avoid an accessor method.
   */
  Intersection[] lineQuadIntersect(LineSegment l, QuadSegment c)
  {
    double[] y = new double[3];
    double[] x = new double[3];
    double[] r = new double[3];
    int nRoots;
    double x0 = c.P1.getX();
    double y0 = c.P1.getY();
    double x1 = c.cp.getX();
    double y1 = c.cp.getY();
    double x2 = c.P2.getX();
    double y2 = c.P2.getY();

    double lx0 = l.P1.getX();
    double ly0 = l.P1.getY();
    double lx1 = l.P2.getX();
    double ly1 = l.P2.getY();
    double dx = lx1 - lx0;
    double dy = ly1 - ly0;

    // form r(t) = y(t) - x(t) for the bezier
    y[0] = y0;
    y[1] = 2 * (y1 - y0);
    y[2] = (y2 - 2 * y1 + y0);

    x[0] = x0;
    x[1] = 2 * (x1 - x0);
    x[2] = (x2 - 2 * x1 + x0);

    // a point, not a line
    if (dy == 0 && dx == 0)
      return null;

    // line on y axis
    if (dx == 0 || (dy / dx) > 1.0)
      {
	double k = dx / dy;
	x[0] -= lx0;
	y[0] -= ly0;
	y[0] *= k;
	y[1] *= k;
	y[2] *= k;
      }
    else
      {
	double k = dy / dx;
	x[0] -= lx0;
	y[0] -= ly0;
	x[0] *= k;
	x[1] *= k;
	x[2] *= k;
      }

    for (int i = 0; i < 3; i++)
      r[i] = y[i] - x[i];

    if ((nRoots = QuadCurve2D.solveQuadratic(r)) > 0)
      {
	Intersection[] temp = new Intersection[nRoots];
	int intersections = 0;
	for (int i = 0; i < nRoots; i++)
	  {
	    double t = r[i];
	    if (t >= 0.0 && t <= 1.0)
	      {
		Point2D p = c.evaluatePoint(t);

		// if the line is on an axis, snap the point to that axis.
		if (dx == 0)
		  p.setLocation(lx0, p.getY());
		if (dy == 0)
		  p.setLocation(p.getX(), ly0);

		if (p.getX() <= Math.max(lx0, lx1)
		    && p.getX() >= Math.min(lx0, lx1)
		    && p.getY() <= Math.max(ly0, ly1)
		    && p.getY() >= Math.min(ly0, ly1))
		  {
		    double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1);
		    temp[i] = new Intersection(p, lineparameter, t);
		    intersections++;
		  }
	      }
	    else
	      temp[i] = null;
	  }
	if (intersections == 0)
	  return null;

	Intersection[] rValues = new Intersection[intersections];

	for (int i = 0; i < nRoots; i++)
	  if (temp[i] != null)
	    rValues[--intersections] = temp[i];
	return (rValues);
      }
    return null;
  }

  /**
   * Returns the intersections between a line and a cubic segment
   * This is done through combining the line's equation with the
   * parametric form of the Bezier and solving the resulting quadratic.
   * This is package-private to avoid an accessor method. 
   */
  Intersection[] lineCubicIntersect(LineSegment l, CubicSegment c)
  {
    double[] y = new double[4];
    double[] x = new double[4];
    double[] r = new double[4];
    int nRoots;
    double x0 = c.P1.getX();
    double y0 = c.P1.getY();
    double x1 = c.cp1.getX();
    double y1 = c.cp1.getY();
    double x2 = c.cp2.getX();
    double y2 = c.cp2.getY();
    double x3 = c.P2.getX();
    double y3 = c.P2.getY();

    double lx0 = l.P1.getX();
    double ly0 = l.P1.getY();
    double lx1 = l.P2.getX();
    double ly1 = l.P2.getY();
    double dx = lx1 - lx0;
    double dy = ly1 - ly0;

    // form r(t) = y(t) - x(t) for the bezier
    y[0] = y0;
    y[1] = 3 * (y1 - y0);
    y[2] = 3 * (y2 + y0 - 2 * y1);
    y[3] = y3 - 3 * y2 + 3 * y1 - y0;

    x[0] = x0;
    x[1] = 3 * (x1 - x0);
    x[2] = 3 * (x2 + x0 - 2 * x1);
    x[3] = x3 - 3 * x2 + 3 * x1 - x0;

    // a point, not a line
    if (dy == 0 && dx == 0)
      return null;

    // line on y axis
    if (dx == 0 || (dy / dx) > 1.0)
      {
	double k = dx / dy;
	x[0] -= lx0;
	y[0] -= ly0;
	y[0] *= k;
	y[1] *= k;
	y[2] *= k;
	y[3] *= k;
      }
    else
      {
	double k = dy / dx;
	x[0] -= lx0;
	y[0] -= ly0;
	x[0] *= k;
	x[1] *= k;
	x[2] *= k;
	x[3] *= k;
      }
    for (int i = 0; i < 4; i++)
      r[i] = y[i] - x[i];

    if ((nRoots = CubicCurve2D.solveCubic(r)) > 0)
      {
	Intersection[] temp = new Intersection[nRoots];
	int intersections = 0;
	for (int i = 0; i < nRoots; i++)
	  {
	    double t = r[i];
	    if (t >= 0.0 && t <= 1.0)
	      {
		// if the line is on an axis, snap the point to that axis.
		Point2D p = c.evaluatePoint(t);
		if (dx == 0)
		  p.setLocation(lx0, p.getY());
		if (dy == 0)
		  p.setLocation(p.getX(), ly0);

		if (p.getX() <= Math.max(lx0, lx1)
		    && p.getX() >= Math.min(lx0, lx1)
		    && p.getY() <= Math.max(ly0, ly1)
		    && p.getY() >= Math.min(ly0, ly1))
		  {
		    double lineparameter = p.distance(l.P1) / l.P2.distance(l.P1);
		    temp[i] = new Intersection(p, lineparameter, t);
		    intersections++;
		  }
	      }
	    else
	      temp[i] = null;
	  }

	if (intersections == 0)
	  return null;

	Intersection[] rValues = new Intersection[intersections];
	for (int i = 0; i < nRoots; i++)
	  if (temp[i] != null)
	    rValues[--intersections] = temp[i];
	return (rValues);
      }
    return null;
  }

  /**
   * Returns the intersection between two lines, or null if there is no
   * intersection.
   * This is package-private to avoid an accessor method.
   */
  Intersection linesIntersect(LineSegment a, LineSegment b)
  {
    Point2D P1 = a.P1;
    Point2D P2 = a.P2;
    Point2D P3 = b.P1;
    Point2D P4 = b.P2;

    if (! Line2D.linesIntersect(P1.getX(), P1.getY(), P2.getX(), P2.getY(),
                                P3.getX(), P3.getY(), P4.getX(), P4.getY()))
      return null;

    double x1 = P1.getX();
    double y1 = P1.getY();
    double rx = P2.getX() - x1;
    double ry = P2.getY() - y1;

    double x2 = P3.getX();
    double y2 = P3.getY();
    double sx = P4.getX() - x2;
    double sy = P4.getY() - y2;

    double determinant = sx * ry - sy * rx;
    double nom = (sx * (y2 - y1) + sy * (x1 - x2));

    // Parallel lines don't intersect. At least we pretend they don't.
    if (Math.abs(determinant) < EPSILON)
      return null;

    nom = nom / determinant;

    if (nom == 0.0)
      return null;
    if (nom == 1.0)
      return null;

    Point2D p = new Point2D.Double(x1 + nom * rx, y1 + nom * ry);

    return new Intersection(p, p.distance(P1) / P1.distance(P2),
                            p.distance(P3) / P3.distance(P4));
  }

  /**
   * Determines if two points are equal, within an error margin
   * 'snap distance'
   * This is package-private to avoid an accessor method.
   */
  boolean pointEquals(Point2D a, Point2D b)
  {
    return (a.equals(b) || a.distance(b) < PE_EPSILON);
  }

  /**
   * Helper method
   * Turns a shape into a Vector of Segments
   */
  private Vector makeSegment(Shape s)
  {
    Vector paths = new Vector();
    PathIterator pi = s.getPathIterator(null);
    double[] coords = new double[6];
    Segment subpath = null;
    Segment current = null;
    double cx;
    double cy;
    double subpathx;
    double subpathy;
    cx = cy = subpathx = subpathy = 0.0;

    this.windingRule = pi.getWindingRule();

    while (! pi.isDone())
      {
	Segment v;
	switch (pi.currentSegment(coords))
	  {
	  case PathIterator.SEG_MOVETO:
	    if (subpath != null)
	      { // close existing open path
		current.next = new LineSegment(cx, cy, subpathx, subpathy);
		current = current.next;
		current.next = subpath;
	      }
	    subpath = null;
	    subpathx = cx = coords[0];
	    subpathy = cy = coords[1];
	    break;

	  // replace 'close' with a line-to.
	  case PathIterator.SEG_CLOSE:
	    if (subpath != null && (subpathx != cx || subpathy != cy))
	      {
		current.next = new LineSegment(cx, cy, subpathx, subpathy);
		current = current.next;
		current.next = subpath;
		cx = subpathx;
		cy = subpathy;
		subpath = null;
	      }
	    else if (subpath != null)
	      {
		current.next = subpath;
		subpath = null;
	      }
	    break;
	  case PathIterator.SEG_LINETO:
	    if (cx != coords[0] || cy != coords[1])
	      {
		v = new LineSegment(cx, cy, coords[0], coords[1]);
		if (subpath == null)
		  {
		    subpath = current = v;
		    paths.add(subpath);
		  }
		else
		  {
		    current.next = v;
		    current = current.next;
		  }
		cx = coords[0];
		cy = coords[1];
	      }
	    break;
	  case PathIterator.SEG_QUADTO:
	    v = new QuadSegment(cx, cy, coords[0], coords[1], coords[2],
	                        coords[3]);
	    if (subpath == null)
	      {
		subpath = current = v;
		paths.add(subpath);
	      }
	    else
	      {
		current.next = v;
		current = current.next;
	      }
	    cx = coords[2];
	    cy = coords[3];
	    break;
	  case PathIterator.SEG_CUBICTO:
	    v = new CubicSegment(cx, cy, coords[0], coords[1], coords[2],
	                         coords[3], coords[4], coords[5]);
	    if (subpath == null)
	      {
		subpath = current = v;
		paths.add(subpath);
	      }
	    else
	      {
		current.next = v;
		current = current.next;
	      }

	    // check if the cubic is self-intersecting
	    double[] lpts = ((CubicSegment) v).getLoop();
	    if (lpts != null)
	      {
		// if it is, break off the loop into its own path.
		v.subdivideInsert(lpts[0]);
		v.next.subdivideInsert((lpts[1] - lpts[0]) / (1.0 - lpts[0]));

		CubicSegment loop = (CubicSegment) v.next;
		v.next = loop.next;
		loop.next = loop;

		v.P2 = v.next.P1 = loop.P2 = loop.P1; // snap points
		paths.add(loop);
		current = v.next;
	      }

	    cx = coords[4];
	    cy = coords[5];
	    break;
	  }
	pi.next();
      }

    if (subpath != null)
      { // close any open path
	if (subpathx != cx || subpathy != cy)
	  {
	    current.next = new LineSegment(cx, cy, subpathx, subpathy);
	    current = current.next;
	    current.next = subpath;
	  }
	else
	  current.next = subpath;
      }

    if (paths.size() == 0)
      return (null);

    return (paths);
  }

  /**
   * Find the intersections of two separate closed paths,
   * A and B, split the segments at the intersection points,
   * and create nodes pointing from one to the other
   */
  private int createNodes(Segment A, Segment B)
  {
    int nNodes = 0;

    Segment a = A;
    Segment b = B;

    do
      {
	do
	  {
	    nNodes += a.splitIntersections(b);
	    b = b.next;
	  }
	while (b != B);

	a = a.next; // move to the next segment
      }
    while (a != A); // until one wrap.

    return (nNodes);
  }

  /**
   * Find the intersections of a path with itself.
   * Splits the segments at the intersection points,
   * and create nodes pointing from one to the other.
   */
  private int createNodesSelf(Segment A)
  {
    int nNodes = 0;
    Segment a = A;

    if (A.next == A)
      return 0;

    do
      {
	Segment b = a.next;
	do
	  {
	    if (b != a) // necessary
	      nNodes += a.splitIntersections(b);
	    b = b.next;
	  }
	while (b != A);
	a = a.next; // move to the next segment
      }
    while (a != A); // until one wrap.

    return (nNodes);
  }

  /**
   * Deletes paths which are redundant from a list, (i.e. solid areas within
   * solid areas) Clears any nodes. Sorts the remaining paths into solids
   * and holes, sets their orientation and sets the solids and holes lists.
   */
  private void deleteRedundantPaths(Vector paths)
  {
    int npaths = paths.size();

    int[][] contains = new int[npaths][npaths];
    int[][] windingNumbers = new int[npaths][2];
    int neg;
    Rectangle2D[] bb = new Rectangle2D[npaths]; // path bounding boxes

    neg = ((windingRule == PathIterator.WIND_NON_ZERO) ? -1 : 1);

    for (int i = 0; i < npaths; i++)
      bb[i] = ((Segment) paths.elementAt(i)).getPathBounds();

    // Find which path contains which, assign winding numbers
    for (int i = 0; i < npaths; i++)
      {
	Segment pathA = (Segment) paths.elementAt(i);
	pathA.nullNodes(); // remove any now-redundant nodes, in case.
	int windingA = pathA.hasClockwiseOrientation() ? 1 : neg;

	for (int j = 0; j < npaths; j++)
	  if (i != j)
	    {
	      Segment pathB = (Segment) paths.elementAt(j);

	      // A contains B
	      if (bb[i].intersects(bb[j]))
	        {
		  Segment s = pathB.next;
		  while (s.P1.getY() == s.P2.getY() && s != pathB)
		    s = s.next;
		  Point2D p = s.getMidPoint();
		  if (pathA.contains(p.getX(), p.getY()))
		    contains[i][j] = windingA;
	        }
	      else
		// A does not contain B
		contains[i][j] = 0;
	    }
	  else
	    contains[i][j] = windingA; // i == j
      }

    for (int i = 0; i < npaths; i++)
      {
	windingNumbers[i][0] = 0;
	for (int j = 0; j < npaths; j++)
	  windingNumbers[i][0] += contains[j][i];
	windingNumbers[i][1] = contains[i][i];
      }

    Vector solids = new Vector();
    Vector holes = new Vector();

    if (windingRule == PathIterator.WIND_NON_ZERO)
      {
	for (int i = 0; i < npaths; i++)
	  {
	    if (windingNumbers[i][0] == 0)
	      holes.add(paths.elementAt(i));
	    else if (windingNumbers[i][0] - windingNumbers[i][1] == 0
	             && Math.abs(windingNumbers[i][0]) == 1)
	      solids.add(paths.elementAt(i));
	  }
      }
    else
      {
	windingRule = PathIterator.WIND_NON_ZERO;
	for (int i = 0; i < npaths; i++)
	  {
	    if ((windingNumbers[i][0] & 1) == 0)
	      holes.add(paths.elementAt(i));
	    else if ((windingNumbers[i][0] & 1) == 1)
	      solids.add(paths.elementAt(i));
	  }
      }

    setDirection(holes, false);
    setDirection(solids, true);
    this.holes = holes;
    this.solids = solids;
  }

  /**
   * Sets the winding direction of a Vector of paths
   * @param clockwise gives the direction,
   * true = clockwise, false = counter-clockwise
   */
  private void setDirection(Vector paths, boolean clockwise)
  {
    Segment v;
    for (int i = 0; i < paths.size(); i++)
      {
	v = (Segment) paths.elementAt(i);
	if (clockwise != v.hasClockwiseOrientation())
	  v.reverseAll();
      }
  }

  /**
   * Class representing a linked-list of vertices forming a closed polygon,
   * convex or concave, without holes.
   */
  private abstract class Segment implements Cloneable
  {
    // segment type, PathIterator segment types are used.
    Point2D P1;
    Point2D P2;
    Segment next;
    Segment node;

    Segment()
    {
      P1 = P2 = null;
      node = next = null;
    }

    /**
     * Reverses the direction of a single segment
     */
    abstract void reverseCoords();

    /**
     * Returns the segment's midpoint
     */
    abstract Point2D getMidPoint();

    /**
     * Returns the bounding box of this segment
     */
    abstract Rectangle2D getBounds();

    /**
     * Transforms a single segment
     */
    abstract void transform(AffineTransform at);

    /**
     * Returns the PathIterator type of a segment
     */
    abstract int getType();

    /**
     */
    abstract int splitIntersections(Segment b);

    /**
     * Returns the PathIterator coords of a segment
     */
    abstract int pathIteratorFormat(double[] coords);

    /**
     * Returns the number of intersections on the positive X axis,
     * with the origin at (x,y), used for contains()-testing
     *
     * (Although that could be done by the line-intersect methods,
     * a dedicated method is better to guarantee consitent handling
     * of endpoint-special-cases)
     */
    abstract int rayCrossing(double x, double y);

    /**
     * Subdivides the segment at parametric value t, inserting
     * the new segment into the linked list after this,
     * such that this becomes [0,t] and this.next becomes [t,1]
     */
    abstract void subdivideInsert(double t);

    /**
     * Returns twice the area of a curve, relative the P1-P2 line
     * Used for area calculations.
     */
    abstract double curveArea();

    /**
     * Compare two segments.
     */
    abstract boolean equals(Segment b);

    /**
     * Determines if this path of segments contains the point (x,y)
     */
    boolean contains(double x, double y)
    {
      Segment v = this;
      int crossings = 0;
      do
        {
	  int n = v.rayCrossing(x, y);
	  crossings += n;
	  v = v.next;
        }
      while (v != this);
      return ((crossings & 1) == 1);
    }

    /**
     * Nulls all nodes of the path. Clean up any 'hairs'.
     */
    void nullNodes()
    {
      Segment v = this;
      do
        {
	  v.node = null;
	  v = v.next;
        }
      while (v != this);
    }

    /**
     * Transforms each segment in the closed path
     */
    void transformSegmentList(AffineTransform at)
    {
      Segment v = this;
      do
        {
	  v.transform(at);
	  v = v.next;
        }
      while (v != this);
    }

    /**
     * Determines the winding direction of the path
     * By the sign of the area.
     */
    boolean hasClockwiseOrientation()
    {
      return (getSignedArea() > 0.0);
    }

    /**
     * Returns the bounds of this path
     */
    public Rectangle2D getPathBounds()
    {
      double xmin;
      double xmax;
      double ymin;
      double ymax;
      xmin = xmax = P1.getX();
      ymin = ymax = P1.getY();

      Segment v = this;
      do
        {
	  Rectangle2D r = v.getBounds();
	  xmin = Math.min(r.getMinX(), xmin);
	  ymin = Math.min(r.getMinY(), ymin);
	  xmax = Math.max(r.getMaxX(), xmax);
	  ymax = Math.max(r.getMaxY(), ymax);
	  v = v.next;
        }
      while (v != this);

      return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
    }

    /**
     * Calculates twice the signed area of the path;
     */
    double getSignedArea()
    {
      Segment s;
      double area = 0.0;

      s = this;
      do
        {
	  area += s.curveArea();

	  area += s.P1.getX() * s.next.P1.getY()
	  - s.P1.getY() * s.next.P1.getX();
	  s = s.next;
        }
      while (s != this);

      return area;
    }

    /**
     * Reverses the orientation of the whole polygon
     */
    void reverseAll()
    {
      reverseCoords();
      Segment v = next;
      Segment former = this;
      while (v != this)
        {
	  v.reverseCoords();
	  Segment vnext = v.next;
	  v.next = former;
	  former = v;
	  v = vnext;
        }
      next = former;
    }

    /**
     * Inserts a Segment after this one
     */
    void insert(Segment v)
    {
      Segment n = next;
      next = v;
      v.next = n;
    }

    /**
     * Returns if this segment path is polygonal
     */
    boolean isPolygonal()
    {
      Segment v = this;
      do
        {
	  if (! (v instanceof LineSegment))
	    return false;
	  v = v.next;
        }
      while (v != this);
      return true;
    }

    /**
     * Clones this path
     */
    Segment cloneSegmentList() throws CloneNotSupportedException
    {
      Vector list = new Vector();
      Segment v = next;

      while (v != this)
        {
	  list.add(v);
	  v = v.next;
        }

      Segment clone = (Segment) this.clone();
      v = clone;
      for (int i = 0; i < list.size(); i++)
        {
	  clone.next = (Segment) ((Segment) list.elementAt(i)).clone();
	  clone = clone.next;
        }
      clone.next = v;
      return v;
    }

    /**
     * Creates a node between this segment and segment b
     * at the given intersection
     * @return the number of nodes created (0 or 1)
     */
    int createNode(Segment b, Intersection i)
    {
      Point2D p = i.p;
      if ((pointEquals(P1, p) || pointEquals(P2, p))
          && (pointEquals(b.P1, p) || pointEquals(b.P2, p)))
	return 0;

      subdivideInsert(i.ta);
      b.subdivideInsert(i.tb);

      // snap points
      b.P2 = b.next.P1 = P2 = next.P1 = i.p;

      node = b.next;
      b.node = next;
      return 1;
    }

    /**
     * Creates multiple nodes from a list of intersections,
     * This must be done in the order of ascending parameters,
     * and the parameters must be recalculated in accordance
     * with each split.
     * @return the number of nodes created
     */
    protected int createNodes(Segment b, Intersection[] x)
    {
      Vector v = new Vector();
      for (int i = 0; i < x.length; i++)
        {
	  Point2D p = x[i].p;
	  if (! ((pointEquals(P1, p) || pointEquals(P2, p))
	      && (pointEquals(b.P1, p) || pointEquals(b.P2, p))))
	    v.add(x[i]);
        }

      int nNodes = v.size();
      Intersection[] A = new Intersection[nNodes];
      Intersection[] B = new Intersection[nNodes];
      for (int i = 0; i < nNodes; i++)
	A[i] = B[i] = (Intersection) v.elementAt(i);

      // Create two lists sorted by the parameter
      // Bubble sort, OK I suppose, since the number of intersections
      // cannot be larger than 9 (cubic-cubic worst case) anyway
      for (int i = 0; i < nNodes - 1; i++)
        {
	  for (int j = i + 1; j < nNodes; j++)
	    {
	      if (A[i].ta > A[j].ta)
	        {
		  Intersection swap = A[i];
		  A[i] = A[j];
		  A[j] = swap;
	        }
	      if (B[i].tb > B[j].tb)
	        {
		  Intersection swap = B[i];
		  B[i] = B[j];
		  B[j] = swap;
	        }
	    }
        }
      // subdivide a
      Segment s = this;
      for (int i = 0; i < nNodes; i++)
        {
	  s.subdivideInsert(A[i].ta);

	  // renormalize the parameters
	  for (int j = i + 1; j < nNodes; j++)
	    A[j].ta = (A[j].ta - A[i].ta) / (1.0 - A[i].ta);

	  A[i].seg = s;
	  s = s.next;
        }

      // subdivide b, set nodes
      s = b;
      for (int i = 0; i < nNodes; i++)
        {
	  s.subdivideInsert(B[i].tb);

	  for (int j = i + 1; j < nNodes; j++)
	    B[j].tb = (B[j].tb - B[i].tb) / (1.0 - B[i].tb);

	  // set nodes
	  B[i].seg.node = s.next; // node a -> b 
	  s.node = B[i].seg.next; // node b -> a 

	  // snap points
	  B[i].seg.P2 = B[i].seg.next.P1 = s.P2 = s.next.P1 = B[i].p;
	  s = s.next;
        }
      return nNodes;
    }

    /**
     * Determines if two paths are equal.
     * Colinear line segments are ignored in the comparison.
     */
    boolean pathEquals(Segment B)
    {
      if (! getPathBounds().equals(B.getPathBounds()))
	return false;

      Segment startA = getTopLeft();
      Segment startB = B.getTopLeft();
      Segment a = startA;
      Segment b = startB;
      do
        {
	  if (! a.equals(b))
	    return false;

	  if (a instanceof LineSegment)
	    a = ((LineSegment) a).lastCoLinear();
	  if (b instanceof LineSegment)
	    b = ((LineSegment) b).lastCoLinear();

	  a = a.next;
	  b = b.next;
        }
      while (a != startA && b != startB);
      return true;
    }

    /**
     * Return the segment with the top-leftmost first point
     */
    Segment getTopLeft()
    {
      Segment v = this;
      Segment tl = this;
      do
        {
	  if (v.P1.getY() < tl.P1.getY())
	    tl = v;
	  else if (v.P1.getY() == tl.P1.getY())
	    {
	      if (v.P1.getX() < tl.P1.getX())
		tl = v;
	    }
	  v = v.next;
        }
      while (v != this);
      return tl;
    }

    /**
     * Returns if the path has a segment outside a shape
     */
    boolean isSegmentOutside(Shape shape)
    {
      return ! shape.contains(getMidPoint());
    }
  } // class Segment

  private class LineSegment extends Segment
  {
    public LineSegment(double x1, double y1, double x2, double y2)
    {
      super();
      P1 = new Point2D.Double(x1, y1);
      P2 = new Point2D.Double(x2, y2);
    }

    public LineSegment(Point2D p1, Point2D p2)
    {
      super();
      P1 = (Point2D) p1.clone();
      P2 = (Point2D) p2.clone();
    }

    /**
     * Clones this segment
     */
    public Object clone()
    {
      return new LineSegment(P1, P2);
    }

    /**
     * Transforms the segment
     */
    void transform(AffineTransform at)
    {
      P1 = at.transform(P1, null);
      P2 = at.transform(P2, null);
    }

    /**
     * Swap start and end points
     */
    void reverseCoords()
    {
      Point2D p = P1;
      P1 = P2;
      P2 = p;
    }

    /**
     * Returns the segment's midpoint
     */
    Point2D getMidPoint()
    {
      return (new Point2D.Double(0.5 * (P1.getX() + P2.getX()),
                                 0.5 * (P1.getY() + P2.getY())));
    }

    /**
     * Returns twice the area of a curve, relative the P1-P2 line
     * Obviously, a line does not enclose any area besides the line
     */
    double curveArea()
    {
      return 0;
    }

    /**
     * Returns the PathIterator type of a segment
     */
    int getType()
    {
      return (PathIterator.SEG_LINETO);
    }

    /**
     * Subdivides the segment at parametric value t, inserting
     * the new segment into the linked list after this,
     * such that this becomes [0,t] and this.next becomes [t,1]
     */
    void subdivideInsert(double t)
    {
      Point2D p = new Point2D.Double((P2.getX() - P1.getX()) * t + P1.getX(),
                                     (P2.getY() - P1.getY()) * t + P1.getY());
      insert(new LineSegment(p, P2));
      P2 = p;
      next.node = node;
      node = null;
    }

    /**
     * Determines if two line segments are strictly colinear
     */
    boolean isCoLinear(LineSegment b)
    {
      double x1 = P1.getX();
      double y1 = P1.getY();
      double x2 = P2.getX();
      double y2 = P2.getY();
      double x3 = b.P1.getX();
      double y3 = b.P1.getY();
      double x4 = b.P2.getX();
      double y4 = b.P2.getY();

      if ((y1 - y3) * (x4 - x3) - (x1 - x3) * (y4 - y3) != 0.0)
	return false;

      return ((x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3) == 0.0);
    }

    /**
     * Return the last segment colinear with this one.
     * Used in comparing paths.
     */
    Segment lastCoLinear()
    {
      Segment prev = this;
      Segment v = next;

      while (v instanceof LineSegment)
        {
	  if (isCoLinear((LineSegment) v))
	    {
	      prev = v;
	      v = v.next;
	    }
	  else
	    return prev;
        }
      return prev;
    }

    /**
     * Compare two segments.
     * We must take into account that the lines may be broken into colinear
     * subsegments and ignore them.
     */
    boolean equals(Segment b)
    {
      if (! (b instanceof LineSegment))
	return false;
      Point2D p1 = P1;
      Point2D p3 = b.P1;

      if (! p1.equals(p3))
	return false;

      Point2D p2 = lastCoLinear().P2;
      Point2D p4 = ((LineSegment) b).lastCoLinear().P2;
      return (p2.equals(p4));
    }

    /**
     * Returns a line segment
     */
    int pathIteratorFormat(double[] coords)
    {
      coords[0] = P2.getX();
      coords[1] = P2.getY();
      return (PathIterator.SEG_LINETO);
    }

    /**
     * Returns if the line has intersections.
     */
    boolean hasIntersections(Segment b)
    {
      if (b instanceof LineSegment)
	return (linesIntersect(this, (LineSegment) b) != null);

      if (b instanceof QuadSegment)
	return (lineQuadIntersect(this, (QuadSegment) b) != null);

      if (b instanceof CubicSegment)
	return (lineCubicIntersect(this, (CubicSegment) b) != null);

      return false;
    }

    /**
     * Splits intersections into nodes,
     * This one handles line-line, line-quadratic, line-cubic
     */
    int splitIntersections(Segment b)
    {
      if (b instanceof LineSegment)
        {
	  Intersection i = linesIntersect(this, (LineSegment) b);

	  if (i == null)
	    return 0;

	  return createNode(b, i);
        }

      Intersection[] x = null;

      if (b instanceof QuadSegment)
	x = lineQuadIntersect(this, (QuadSegment) b);

      if (b instanceof CubicSegment)
	x = lineCubicIntersect(this, (CubicSegment) b);

      if (x == null)
	return 0;

      if (x.length == 1)
	return createNode(b, (Intersection) x[0]);

      return createNodes(b, x);
    }

    /**
     * Returns the bounding box of this segment
     */
    Rectangle2D getBounds()
    {
      return (new Rectangle2D.Double(Math.min(P1.getX(), P2.getX()),
                                     Math.min(P1.getY(), P2.getY()),
                                     Math.abs(P1.getX() - P2.getX()),
                                     Math.abs(P1.getY() - P2.getY())));
    }

    /**
     * Returns the number of intersections on the positive X axis,
     * with the origin at (x,y), used for contains()-testing
     */
    int rayCrossing(double x, double y)
    {
      double x0 = P1.getX() - x;
      double y0 = P1.getY() - y;
      double x1 = P2.getX() - x;
      double y1 = P2.getY() - y;

      if (y0 * y1 > 0)
	return 0;

      if (x0 < 0 && x1 < 0)
	return 0;

      if (y0 == 0.0)
	y0 -= EPSILON;

      if (y1 == 0.0)
	y1 -= EPSILON;

      if (Line2D.linesIntersect(x0, y0, x1, y1, 
				EPSILON, 0.0, Double.MAX_VALUE, 0.0))
	return 1;
      return 0;
    }
  } // class LineSegment

  /**
   * Quadratic Bezier curve segment
   *
   * Note: Most peers don't support quadratics directly, so it might make
   * sense to represent them as cubics internally and just be done with it.
   * I think we should be peer-agnostic, however, and stay faithful to the
   * input geometry types as far as possible.
   */
  private class QuadSegment extends Segment
  {
    Point2D cp; // control point

    /**
     * Constructor, takes the coordinates of the start, control,
     * and end point, respectively.
     */
    QuadSegment(double x1, double y1, double cx, double cy, double x2,
                double y2)
    {
      super();
      P1 = new Point2D.Double(x1, y1);
      P2 = new Point2D.Double(x2, y2);
      cp = new Point2D.Double(cx, cy);
    }

    /**
     * Clones this segment
     */
    public Object clone()
    {
      return new QuadSegment(P1.getX(), P1.getY(), cp.getX(), cp.getY(),
                             P2.getX(), P2.getY());
    }

    /**
     * Returns twice the area of a curve, relative the P1-P2 line
     *
     * The area formula can be derived by using Green's formula in the
     * plane on the parametric form of the bezier.
     */
    double curveArea()
    {
      double x0 = P1.getX();
      double y0 = P1.getY();
      double x1 = cp.getX();
      double y1 = cp.getY();
      double x2 = P2.getX();
      double y2 = P2.getY();

      double P = (y2 - 2 * y1 + y0);
      double Q = 2 * (y1 - y0);

      double A = (x2 - 2 * x1 + x0);
      double B = 2 * (x1 - x0);

      double area = (B * P - A * Q) / 3.0;
      return (area);
    }

    /**
     * Compare two segments.
     */
    boolean equals(Segment b)
    {
      if (! (b instanceof QuadSegment))
	return false;

      return (P1.equals(b.P1) && cp.equals(((QuadSegment) b).cp)
             && P2.equals(b.P2));
    }

    /**
     * Returns a Point2D corresponding to the parametric value t
     * of the curve
     */
    Point2D evaluatePoint(double t)
    {
      double x0 = P1.getX();
      double y0 = P1.getY();
      double x1 = cp.getX();
      double y1 = cp.getY();
      double x2 = P2.getX();
      double y2 = P2.getY();

      return new Point2D.Double(t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0)
                                + x0,
                                t * t * (y2 - 2 * y1 + y0) + 2 * t * (y1 - y0)
                                + y0);
    }

    /**
     * Returns the bounding box of this segment
     */
    Rectangle2D getBounds()
    {
      double x0 = P1.getX();
      double y0 = P1.getY();
      double x1 = cp.getX();
      double y1 = cp.getY();
      double x2 = P2.getX();
      double y2 = P2.getY();
      double r0;
      double r1;

      double xmax = Math.max(x0, x2);
      double ymax = Math.max(y0, y2);
      double xmin = Math.min(x0, x2);
      double ymin = Math.min(y0, y2);

      r0 = 2 * (y1 - y0);
      r1 = 2 * (y2 - 2 * y1 + y0);
      if (r1 != 0.0)
        {
	  double t = -r0 / r1;
	  if (t > 0.0 && t < 1.0)
	    {
	      double y = evaluatePoint(t).getY();
	      ymax = Math.max(y, ymax);
	      ymin = Math.min(y, ymin);
	    }
        }
      r0 = 2 * (x1 - x0);
      r1 = 2 * (x2 - 2 * x1 + x0);
      if (r1 != 0.0)
        {
	  double t = -r0 / r1;
	  if (t > 0.0 && t < 1.0)
	    {
	      double x = evaluatePoint(t).getY();
	      xmax = Math.max(x, xmax);
	      xmin = Math.min(x, xmin);
	    }
        }

      return (new Rectangle2D.Double(xmin, ymin, xmax - xmin, ymax - ymin));
    }

    /**
     * Returns a cubic segment corresponding to this curve
     */
    CubicSegment getCubicSegment()
    {
      double x1 = P1.getX() + 2.0 * (cp.getX() - P1.getX()) / 3.0;
      double y1 = P1.getY() + 2.0 * (cp.getY() - P1.getY()) / 3.0;
      double x2 = cp.getX() + (P2.getX() - cp.getX()) / 3.0;
      double y2 = cp.getY() + (P2.getY() - cp.getY()) / 3.0;

      return new CubicSegment(P1.getX(), P1.getY(), x1, y1, x2, y2, P2.getX(),
                              P2.getY());
    }

    /**
     * Returns the segment's midpoint
     */
    Point2D getMidPoint()
    {
      return evaluatePoint(0.5);
    }

    /**
     * Returns the PathIterator type of a segment
     */
    int getType()
    {
      return (PathIterator.SEG_QUADTO);
    }

    /**
     * Returns the PathIterator coords of a segment
     */
    int pathIteratorFormat(double[] coords)
    {
      coords[0] = cp.getX();
      coords[1] = cp.getY();
      coords[2] = P2.getX();
      coords[3] = P2.getY();
      return (PathIterator.SEG_QUADTO);
    }

    /**
     * Returns the number of intersections on the positive X axis,
     * with the origin at (x,y), used for contains()-testing
     */
    int rayCrossing(double x, double y)
    {
      double x0 = P1.getX() - x;
      double y0 = P1.getY() - y;
      double x1 = cp.getX() - x;
      double y1 = cp.getY() - y;
      double x2 = P2.getX() - x;
      double y2 = P2.getY() - y;
      double[] r = new double[3];
      int nRoots;
      int nCrossings = 0;

      /* check if curve may intersect X+ axis. */
      if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0) && (y0 * y1 <= 0 || y1 * y2 <= 0))
        {
	  if (y0 == 0.0)
	    y0 -= EPSILON;
	  if (y2 == 0.0)
	    y2 -= EPSILON;

	  r[0] = y0;
	  r[1] = 2 * (y1 - y0);
	  r[2] = (y2 - 2 * y1 + y0);

	  nRoots = QuadCurve2D.solveQuadratic(r);
	  for (int i = 0; i < nRoots; i++)
	    if (r[i] > 0.0f && r[i] < 1.0f)
	      {
		double t = r[i];
		if (t * t * (x2 - 2 * x1 + x0) + 2 * t * (x1 - x0) + x0 > 0.0)
		  nCrossings++;
	      }
        }
      return nCrossings;
    }

    /**
     * Swap start and end points
     */
    void reverseCoords()
    {
      Point2D temp = P1;
      P1 = P2;
      P2 = temp;
    }

    /**
     * Splits intersections into nodes,
     * This one handles quadratic-quadratic only,
     * Quadratic-line is passed on to the LineSegment class,
     * Quadratic-cubic is passed on to the CubicSegment class
     */
    int splitIntersections(Segment b)
    {
      if (b instanceof LineSegment)
	return (b.splitIntersections(this));

      if (b instanceof CubicSegment)
	return (b.splitIntersections(this));

      if (b instanceof QuadSegment)
        {
	  // Use the cubic-cubic intersection routine for quads as well,
	  // Since a quadratic can be exactly described as a cubic, this
	  // should not be a problem; 
	  // The recursion depth will be the same in any case.
	  Intersection[] x = cubicCubicIntersect(getCubicSegment(),
	                                         ((QuadSegment) b)
	                                         .getCubicSegment());
	  if (x == null)
	    return 0;

	  if (x.length == 1)
	    return createNode(b, (Intersection) x[0]);

	  return createNodes(b, x);
        }
      return 0;
    }

    /**
     * Subdivides the segment at parametric value t, inserting
     * the new segment into the linked list after this,
     * such that this becomes [0,t] and this.next becomes [t,1]
     */
    void subdivideInsert(double t)
    {
      double x0 = P1.getX();
      double y0 = P1.getY();
      double x1 = cp.getX();
      double y1 = cp.getY();
      double x2 = P2.getX();
      double y2 = P2.getY();

      double p10x = x0 + t * (x1 - x0);
      double p10y = y0 + t * (y1 - y0);
      double p11x = x1 + t * (x2 - x1);
      double p11y = y1 + t * (y2 - y1);
      double p20x = p10x + t * (p11x - p10x);
      double p20y = p10y + t * (p11y - p10y);

      insert(new QuadSegment(p20x, p20y, p11x, p11y, x2, y2));
      P2 = next.P1;
      cp.setLocation(p10x, p10y);

      next.node = node;
      node = null;
    }

    /**
     * Transforms the segment
     */
    void transform(AffineTransform at)
    {
      P1 = at.transform(P1, null);
      P2 = at.transform(P2, null);
      cp = at.transform(cp, null);
    }
  } // class QuadSegment

  /**
   * Cubic Bezier curve segment
   */
  private class CubicSegment extends Segment
  {
    Point2D cp1; // control points
    Point2D cp2; // control points

    /**
     * Constructor - takes coordinates of the starting point,
     * first control point, second control point and end point,
     * respecively.
     */
    public CubicSegment(double x1, double y1, double c1x, double c1y,
                        double c2x, double c2y, double x2, double y2)
    {
      super();
      P1 = new Point2D.Double(x1, y1);
      P2 = new Point2D.Double(x2, y2);
      cp1 = new Point2D.Double(c1x, c1y);
      cp2 = new Point2D.Double(c2x, c2y);
    }

    /**
     * Clones this segment
     */
    public Object clone()
    {
      return new CubicSegment(P1.getX(), P1.getY(), cp1.getX(), cp1.getY(),
                              cp2.getX(), cp2.getY(), P2.getX(), P2.getY());
    }

    /**
     * Returns twice the area of a curve, relative the P1-P2 line
     *
     * The area formula can be derived by using Green's formula in the
     * plane on the parametric form of the bezier.
     */
    double curveArea()
    {
      double x0 = P1.getX();
      double y0 = P1.getY();
      double x1 = cp1.getX();
      double y1 = cp1.getY();
      double x2 = cp2.getX();
      double y2 = cp2.getY();
      double x3 = P2.getX();
      double y3 = P2.getY();

      double P = y3 - 3 * y2 + 3 * y1 - y0;
      double Q = 3 * (y2 + y0 - 2 * y1);
      double R = 3 * (y1 - y0);

      double A = x3 - 3 * x2 + 3 * x1 - x0;
      double B = 3 * (x2 + x0 - 2 * x1);
      double C = 3 * (x1 - x0);

      double area = (B * P - A * Q) / 5.0 + (C * P - A * R) / 2.0
                    + (C * Q - B * R) / 3.0;

      return (area);
    }

    /**
     * Compare two segments.
     */
    boolean equals(Segment b)
    {
      if (! (b instanceof CubicSegment))
	return false;

      return (P1.equals(b.P1) && cp1.equals(((CubicSegment) b).cp1)
             && cp2.equals(((CubicSegment) b).cp2) && P2.equals(b.P2));
    }

    /**
     * Returns a Point2D corresponding to the parametric value t
     * of the curve
     */
    Point2D evaluatePoint(double t)
    {
      double x0 = P1.getX();
      double y0 = P1.getY();
      double x1 = cp1.getX();
      double y1 = cp1.getY();
      double x2 = cp2.getX();
      double y2 = cp2.getY();
      double x3 = P2.getX();
      double y3 = P2.getY();

      return new Point2D.Double(-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3)
                                + 3 * t * t * (x0 - 2 * x1 + x2)
                                + 3 * t * (x1 - x0) + x0,
                                -(t * t * t) * (y0 - 3 * y1 + 3 * y2 - y3)
                                + 3 * t * t * (y0 - 2 * y1 + y2)
                                + 3 * t * (y1 - y0) + y0);
    }

    /**
     * Returns the bounding box of this segment
     */
    Rectangle2D getBounds()
    {
      double x0 = P1.getX();
      double y0 = P1.getY();
      double x1 = cp1.getX();
      double y1 = cp1.getY();
      double x2 = cp2.getX();
      double y2 = cp2.getY();
      double x3 = P2.getX();
      double y3 = P2.getY();
      double[] r = new double[3];

      double xmax = Math.max(x0, x3);
      double ymax = Math.max(y0, y3);
      double xmin = Math.min(x0, x3);
      double ymin = Math.min(y0, y3);

      r[0] = 3 * (y1 - y0);
      r[1] = 6.0 * (y2 + y0 - 2 * y1);
      r[2] = 3.0 * (y3 - 3 * y2 + 3 * y1 - y0);

      int n = QuadCurve2D.solveQuadratic(r);
      for (int i = 0; i < n; i++)
        {
	  double t = r[i];
	  if (t > 0 && t < 1.0)
	    {
	      double y = evaluatePoint(t).getY();
	      ymax = Math.max(y, ymax);
	      ymin = Math.min(y, ymin);
	    }
        }

      r[0] = 3 * (x1 - x0);
      r[1] = 6.0 * (x2 + x0 - 2 * x1);
      r[2] = 3.0 * (x3 - 3 * x2 + 3 * x1 - x0);
      n = QuadCurve2D.solveQuadratic(r);
      for (int i = 0; i < n; i++)
        {
	  double t = r[i];
	  if (t > 0 && t < 1.0)
	    {
	      double x = evaluatePoint(t).getX();
	      xmax = Math.max(x, xmax);
	      xmin = Math.min(x, xmin);
	    }
        }
      return (new Rectangle2D.Double(xmin, ymin, (xmax - xmin), (ymax - ymin)));
    }

    /**
     * Returns a CubicCurve2D object corresponding to this segment.
     */
    CubicCurve2D getCubicCurve2D()
    {
      return new CubicCurve2D.Double(P1.getX(), P1.getY(), cp1.getX(),
                                     cp1.getY(), cp2.getX(), cp2.getY(),
                                     P2.getX(), P2.getY());
    }

    /**
     * Returns the parametric points of self-intersection if the cubic
     * is self-intersecting, null otherwise.
     */
    double[] getLoop()
    {
      double x0 = P1.getX();
      double y0 = P1.getY();
      double x1 = cp1.getX();
      double y1 = cp1.getY();
      double x2 = cp2.getX();
      double y2 = cp2.getY();
      double x3 = P2.getX();
      double y3 = P2.getY();
      double[] r = new double[4];
      double k;
      double R;
      double T;
      double A;
      double B;
      double[] results = new double[2];

      R = x3 - 3 * x2 + 3 * x1 - x0;
      T = y3 - 3 * y2 + 3 * y1 - y0;

      // A qudratic
      if (R == 0.0 && T == 0.0)
	return null;

      // true cubic
      if (R != 0.0 && T != 0.0)
        {
	  A = 3 * (x2 + x0 - 2 * x1) / R;
	  B = 3 * (x1 - x0) / R;

	  double P = 3 * (y2 + y0 - 2 * y1) / T;
	  double Q = 3 * (y1 - y0) / T;

	  if (A == P || Q == B)
	    return null;

	  k = (Q - B) / (A - P);
        }
      else
        {
	  if (R == 0.0)
	    {
	      // quadratic in x
	      k = -(3 * (x1 - x0)) / (3 * (x2 + x0 - 2 * x1));
	      A = 3 * (y2 + y0 - 2 * y1) / T;
	      B = 3 * (y1 - y0) / T;
	    }
	  else
	    {
	      // quadratic in y
	      k = -(3 * (y1 - y0)) / (3 * (y2 + y0 - 2 * y1));
	      A = 3 * (x2 + x0 - 2 * x1) / R;
	      B = 3 * (x1 - x0) / R;
	    }
        }

      r[0] = -k * k * k - A * k * k - B * k;
      r[1] = 3 * k * k + 2 * k * A + 2 * B;
      r[2] = -3 * k;
      r[3] = 2;

      int n = CubicCurve2D.solveCubic(r);
      if (n != 3)
	return null;

      // sort r
      double t;
      for (int i = 0; i < 2; i++)
	for (int j = i + 1; j < 3; j++)
	  if (r[j] < r[i])
	    {
	      t = r[i];
	      r[i] = r[j];
	      r[j] = t;
	    }

      if (Math.abs(r[0] + r[2] - k) < 1E-13)
	if (r[0] >= 0.0 && r[0] <= 1.0 && r[2] >= 0.0 && r[2] <= 1.0)
	  if (evaluatePoint(r[0]).distance(evaluatePoint(r[2])) < PE_EPSILON * 10)
	    { // we snap the points anyway
	      results[0] = r[0];
	      results[1] = r[2];
	      return (results);
	    }
      return null;
    }

    /**
     * Returns the segment's midpoint
     */
    Point2D getMidPoint()
    {
      return evaluatePoint(0.5);
    }

    /**
     * Returns the PathIterator type of a segment
     */
    int getType()
    {
      return (PathIterator.SEG_CUBICTO);
    }

    /**
     * Returns the PathIterator coords of a segment
     */
    int pathIteratorFormat(double[] coords)
    {
      coords[0] = cp1.getX();
      coords[1] = cp1.getY();
      coords[2] = cp2.getX();
      coords[3] = cp2.getY();
      coords[4] = P2.getX();
      coords[5] = P2.getY();
      return (PathIterator.SEG_CUBICTO);
    }

    /**
     * Returns the number of intersections on the positive X axis,
     * with the origin at (x,y), used for contains()-testing
     */
    int rayCrossing(double x, double y)
    {
      double x0 = P1.getX() - x;
      double y0 = P1.getY() - y;
      double x1 = cp1.getX() - x;
      double y1 = cp1.getY() - y;
      double x2 = cp2.getX() - x;
      double y2 = cp2.getY() - y;
      double x3 = P2.getX() - x;
      double y3 = P2.getY() - y;
      double[] r = new double[4];
      int nRoots;
      int nCrossings = 0;

      /* check if curve may intersect X+ axis. */
      if ((x0 > 0.0 || x1 > 0.0 || x2 > 0.0 || x3 > 0.0)
          && (y0 * y1 <= 0 || y1 * y2 <= 0 || y2 * y3 <= 0))
        {
	  if (y0 == 0.0)
	    y0 -= EPSILON;
	  if (y3 == 0.0)
	    y3 -= EPSILON;

	  r[0] = y0;
	  r[1] = 3 * (y1 - y0);
	  r[2] = 3 * (y2 + y0 - 2 * y1);
	  r[3] = y3 - 3 * y2 + 3 * y1 - y0;

	  if ((nRoots = CubicCurve2D.solveCubic(r)) > 0)
	    for (int i = 0; i < nRoots; i++)
	      {
		if (r[i] > 0.0 && r[i] < 1.0)
		  {
		    double t = r[i];
		    if (-(t * t * t) * (x0 - 3 * x1 + 3 * x2 - x3)
		        + 3 * t * t * (x0 - 2 * x1 + x2) + 3 * t * (x1 - x0)
		        + x0 > 0.0)
		      nCrossings++;
		  }
	      }
        }
      return nCrossings;
    }

    /**
     * Swap start and end points
     */
    void reverseCoords()
    {
      Point2D p = P1;
      P1 = P2;
      P2 = p;
      p = cp1; // swap control points
      cp1 = cp2;
      cp2 = p;
    }

    /**
     * Splits intersections into nodes,
     * This one handles cubic-cubic and cubic-quadratic intersections
     */
    int splitIntersections(Segment b)
    {
      if (b instanceof LineSegment)
	return (b.splitIntersections(this));

      Intersection[] x = null;

      if (b instanceof QuadSegment)
	x = cubicCubicIntersect(this, ((QuadSegment) b).getCubicSegment());

      if (b instanceof CubicSegment)
	x = cubicCubicIntersect(this, (CubicSegment) b);

      if (x == null)
	return 0;

      if (x.length == 1)
	return createNode(b, x[0]);

      return createNodes(b, x);
    }

    /**
     * Subdivides the segment at parametric value t, inserting
     * the new segment into the linked list after this,
     * such that this becomes [0,t] and this.next becomes [t,1]
     */
    void subdivideInsert(double t)
    {
      CubicSegment s = (CubicSegment) clone();
      double p1x = (s.cp1.getX() - s.P1.getX()) * t + s.P1.getX();
      double p1y = (s.cp1.getY() - s.P1.getY()) * t + s.P1.getY();

      double px = (s.cp2.getX() - s.cp1.getX()) * t + s.cp1.getX();
      double py = (s.cp2.getY() - s.cp1.getY()) * t + s.cp1.getY();

      s.cp2.setLocation((s.P2.getX() - s.cp2.getX()) * t + s.cp2.getX(),
                        (s.P2.getY() - s.cp2.getY()) * t + s.cp2.getY());

      s.cp1.setLocation((s.cp2.getX() - px) * t + px,
                        (s.cp2.getY() - py) * t + py);

      double p2x = (px - p1x) * t + p1x;
      double p2y = (py - p1y) * t + p1y;

      double p3x = (s.cp1.getX() - p2x) * t + p2x;
      double p3y = (s.cp1.getY() - p2y) * t + p2y;
      s.P1.setLocation(p3x, p3y);

      // insert new curve
      insert(s);

      // set this curve
      cp1.setLocation(p1x, p1y);
      cp2.setLocation(p2x, p2y);
      P2 = s.P1;
      next.node = node;
      node = null;
    }

    /**
     * Transforms the segment
     */
    void transform(AffineTransform at)
    {
      P1 = at.transform(P1, null);
      P2 = at.transform(P2, null);
      cp1 = at.transform(cp1, null);
      cp2 = at.transform(cp2, null);
    }
  } // class CubicSegment
} // class Area