summaryrefslogtreecommitdiff
path: root/Utilities/cmzstd/lib/common/entropy_common.c
blob: 9d3e4e8e36ab4f99864219003504b904dd7e709f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/* ******************************************************************
 * Common functions of New Generation Entropy library
 * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
 *
 *  You can contact the author at :
 *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
 *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
****************************************************************** */

/* *************************************
*  Dependencies
***************************************/
#include "mem.h"
#include "error_private.h"       /* ERR_*, ERROR */
#define FSE_STATIC_LINKING_ONLY  /* FSE_MIN_TABLELOG */
#include "fse.h"
#define HUF_STATIC_LINKING_ONLY  /* HUF_TABLELOG_ABSOLUTEMAX */
#include "huf.h"


/*===   Version   ===*/
unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; }


/*===   Error Management   ===*/
unsigned FSE_isError(size_t code) { return ERR_isError(code); }
const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }

unsigned HUF_isError(size_t code) { return ERR_isError(code); }
const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }


/*-**************************************************************
*  FSE NCount encoding-decoding
****************************************************************/
size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
                 const void* headerBuffer, size_t hbSize)
{
    const BYTE* const istart = (const BYTE*) headerBuffer;
    const BYTE* const iend = istart + hbSize;
    const BYTE* ip = istart;
    int nbBits;
    int remaining;
    int threshold;
    U32 bitStream;
    int bitCount;
    unsigned charnum = 0;
    int previous0 = 0;

    if (hbSize < 4) {
        /* This function only works when hbSize >= 4 */
        char buffer[4];
        memset(buffer, 0, sizeof(buffer));
        memcpy(buffer, headerBuffer, hbSize);
        {   size_t const countSize = FSE_readNCount(normalizedCounter, maxSVPtr, tableLogPtr,
                                                    buffer, sizeof(buffer));
            if (FSE_isError(countSize)) return countSize;
            if (countSize > hbSize) return ERROR(corruption_detected);
            return countSize;
    }   }
    assert(hbSize >= 4);

    /* init */
    memset(normalizedCounter, 0, (*maxSVPtr+1) * sizeof(normalizedCounter[0]));   /* all symbols not present in NCount have a frequency of 0 */
    bitStream = MEM_readLE32(ip);
    nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG;   /* extract tableLog */
    if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
    bitStream >>= 4;
    bitCount = 4;
    *tableLogPtr = nbBits;
    remaining = (1<<nbBits)+1;
    threshold = 1<<nbBits;
    nbBits++;

    while ((remaining>1) & (charnum<=*maxSVPtr)) {
        if (previous0) {
            unsigned n0 = charnum;
            while ((bitStream & 0xFFFF) == 0xFFFF) {
                n0 += 24;
                if (ip < iend-5) {
                    ip += 2;
                    bitStream = MEM_readLE32(ip) >> bitCount;
                } else {
                    bitStream >>= 16;
                    bitCount   += 16;
            }   }
            while ((bitStream & 3) == 3) {
                n0 += 3;
                bitStream >>= 2;
                bitCount += 2;
            }
            n0 += bitStream & 3;
            bitCount += 2;
            if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
            while (charnum < n0) normalizedCounter[charnum++] = 0;
            if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
                assert((bitCount >> 3) <= 3); /* For first condition to work */
                ip += bitCount>>3;
                bitCount &= 7;
                bitStream = MEM_readLE32(ip) >> bitCount;
            } else {
                bitStream >>= 2;
        }   }
        {   int const max = (2*threshold-1) - remaining;
            int count;

            if ((bitStream & (threshold-1)) < (U32)max) {
                count = bitStream & (threshold-1);
                bitCount += nbBits-1;
            } else {
                count = bitStream & (2*threshold-1);
                if (count >= threshold) count -= max;
                bitCount += nbBits;
            }

            count--;   /* extra accuracy */
            remaining -= count < 0 ? -count : count;   /* -1 means +1 */
            normalizedCounter[charnum++] = (short)count;
            previous0 = !count;
            while (remaining < threshold) {
                nbBits--;
                threshold >>= 1;
            }

            if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
                ip += bitCount>>3;
                bitCount &= 7;
            } else {
                bitCount -= (int)(8 * (iend - 4 - ip));
                ip = iend - 4;
            }
            bitStream = MEM_readLE32(ip) >> (bitCount & 31);
    }   }   /* while ((remaining>1) & (charnum<=*maxSVPtr)) */
    if (remaining != 1) return ERROR(corruption_detected);
    if (bitCount > 32) return ERROR(corruption_detected);
    *maxSVPtr = charnum-1;

    ip += (bitCount+7)>>3;
    return ip-istart;
}


/*! HUF_readStats() :
    Read compact Huffman tree, saved by HUF_writeCTable().
    `huffWeight` is destination buffer.
    `rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32.
    @return : size read from `src` , or an error Code .
    Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
*/
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
                     U32* nbSymbolsPtr, U32* tableLogPtr,
                     const void* src, size_t srcSize)
{
    U32 weightTotal;
    const BYTE* ip = (const BYTE*) src;
    size_t iSize;
    size_t oSize;

    if (!srcSize) return ERROR(srcSize_wrong);
    iSize = ip[0];
    /* memset(huffWeight, 0, hwSize);   *//* is not necessary, even though some analyzer complain ... */

    if (iSize >= 128) {  /* special header */
        oSize = iSize - 127;
        iSize = ((oSize+1)/2);
        if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
        if (oSize >= hwSize) return ERROR(corruption_detected);
        ip += 1;
        {   U32 n;
            for (n=0; n<oSize; n+=2) {
                huffWeight[n]   = ip[n/2] >> 4;
                huffWeight[n+1] = ip[n/2] & 15;
    }   }   }
    else  {   /* header compressed with FSE (normal case) */
        FSE_DTable fseWorkspace[FSE_DTABLE_SIZE_U32(6)];  /* 6 is max possible tableLog for HUF header (maybe even 5, to be tested) */
        if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
        oSize = FSE_decompress_wksp(huffWeight, hwSize-1, ip+1, iSize, fseWorkspace, 6);   /* max (hwSize-1) values decoded, as last one is implied */
        if (FSE_isError(oSize)) return oSize;
    }

    /* collect weight stats */
    memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
    weightTotal = 0;
    {   U32 n; for (n=0; n<oSize; n++) {
            if (huffWeight[n] >= HUF_TABLELOG_MAX) return ERROR(corruption_detected);
            rankStats[huffWeight[n]]++;
            weightTotal += (1 << huffWeight[n]) >> 1;
    }   }
    if (weightTotal == 0) return ERROR(corruption_detected);

    /* get last non-null symbol weight (implied, total must be 2^n) */
    {   U32 const tableLog = BIT_highbit32(weightTotal) + 1;
        if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
        *tableLogPtr = tableLog;
        /* determine last weight */
        {   U32 const total = 1 << tableLog;
            U32 const rest = total - weightTotal;
            U32 const verif = 1 << BIT_highbit32(rest);
            U32 const lastWeight = BIT_highbit32(rest) + 1;
            if (verif != rest) return ERROR(corruption_detected);    /* last value must be a clean power of 2 */
            huffWeight[oSize] = (BYTE)lastWeight;
            rankStats[lastWeight]++;
    }   }

    /* check tree construction validity */
    if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected);   /* by construction : at least 2 elts of rank 1, must be even */

    /* results */
    *nbSymbolsPtr = (U32)(oSize+1);
    return iSize+1;
}