summaryrefslogtreecommitdiff
path: root/src/fsmattach.cc
diff options
context:
space:
mode:
authorAdrian Thurston <thurston@complang.org>2012-08-01 13:18:02 +0000
committerAdrian Thurston <thurston@complang.org>2012-08-01 13:18:02 +0000
commit6bc9727d3ac615090bf5086cae43d225d3fb552f (patch)
tree695c7894d54b8b9de40e4cf347063e99238b7b0a /src/fsmattach.cc
parent39c9b4a6f1014cb30ee535d4f534d0dcc4fe5905 (diff)
downloadcolm-6bc9727d3ac615090bf5086cae43d225d3fb552f.tar.gz
revert "moved 'colm' dir to 'src'"
Colm includes a library component with headers installed to a private dir inside include: $prefix/include/colm. We need our headers to reference each other using this colm prefix. This needs to be true for compiling our source and also for compiling external programs. It is conventient to have all the source in a directory called colm and then to use -I <source-root> when building colm. We use $prefix/include when building external programs. This reverts commit 247904a84430b8c9151fa6afb68f01b60afb92c9.
Diffstat (limited to 'src/fsmattach.cc')
-rw-r--r--src/fsmattach.cc425
1 files changed, 0 insertions, 425 deletions
diff --git a/src/fsmattach.cc b/src/fsmattach.cc
deleted file mode 100644
index a58ed9a4..00000000
--- a/src/fsmattach.cc
+++ /dev/null
@@ -1,425 +0,0 @@
-/*
- * Copyright 2006-2012 Adrian Thurston <thurston@complang.org>
- */
-
-/* This file is part of Colm.
- *
- * Colm is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * Colm is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with Colm; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- */
-
-#include <string.h>
-#include <assert.h>
-#include "fsmgraph.h"
-
-#include <iostream>
-using namespace std;
-
-/* Insert a transition into an inlist. The head must be supplied. */
-void FsmGraph::attachToInList( FsmState *from, FsmState *to,
- FsmTrans *&head, FsmTrans *trans )
-{
- trans->ilnext = head;
- trans->ilprev = 0;
-
- /* If in trans list is not empty, set the head->prev to trans. */
- if ( head != 0 )
- head->ilprev = trans;
-
- /* Now insert ourselves at the front of the list. */
- head = trans;
-
- /* Keep track of foreign transitions for from and to. */
- if ( from != to ) {
- if ( misfitAccounting ) {
- /* If the number of foreign in transitions is about to go up to 1 then
- * move it from the misfit list to the main list. */
- if ( to->foreignInTrans == 0 )
- stateList.append( misfitList.detach( to ) );
- }
-
- to->foreignInTrans += 1;
- }
-};
-
-/* Detach a transition from an inlist. The head of the inlist must be supplied. */
-void FsmGraph::detachFromInList( FsmState *from, FsmState *to,
- FsmTrans *&head, FsmTrans *trans )
-{
- /* Detach in the inTransList. */
- if ( trans->ilprev == 0 )
- head = trans->ilnext;
- else
- trans->ilprev->ilnext = trans->ilnext;
-
- if ( trans->ilnext != 0 )
- trans->ilnext->ilprev = trans->ilprev;
-
- /* Keep track of foreign transitions for from and to. */
- if ( from != to ) {
- to->foreignInTrans -= 1;
-
- if ( misfitAccounting ) {
- /* If the number of foreign in transitions goes down to 0 then move it
- * from the main list to the misfit list. */
- if ( to->foreignInTrans == 0 )
- misfitList.append( stateList.detach( to ) );
- }
- }
-}
-
-/* Attach states on the default transition, range list or on out/in list key.
- * First makes a new transition. If there is already a transition out from
- * fromState on the default, then will assertion fail. */
-FsmTrans *FsmGraph::attachNewTrans( FsmState *from, FsmState *to, Key lowKey, Key highKey )
-{
- /* Make the new transition. */
- FsmTrans *retVal = new FsmTrans();
-
- /* The transition is now attached. Remember the parties involved. */
- retVal->fromState = from;
- retVal->toState = to;
-
- /* Make the entry in the out list for the transitions. */
- from->outList.append( retVal );
-
- /* Set the the keys of the new trans. */
- retVal->lowKey = lowKey;
- retVal->highKey = highKey;
-
- /* Attach using inList as the head pointer. */
- if ( to != 0 )
- attachToInList( from, to, to->inList.head, retVal );
-
- return retVal;
-}
-
-/* Attach for range lists or for the default transition. This attach should
- * be used when a transition already is allocated and must be attached to a
- * target state. Does not handle adding the transition into the out list. */
-void FsmGraph::attachTrans( FsmState *from, FsmState *to, FsmTrans *trans )
-{
- assert( trans->fromState == 0 && trans->toState == 0 );
- trans->fromState = from;
- trans->toState = to;
-
- if ( to != 0 ) {
- /* Attach using the inList pointer as the head pointer. */
- attachToInList( from, to, to->inList.head, trans );
- }
-}
-
-/* Redirect a transition away from error and towards some state. This is just
- * like attachTrans except it requires fromState to be set and does not touch
- * it. */
-void FsmGraph::redirectErrorTrans( FsmState *from, FsmState *to, FsmTrans *trans )
-{
- assert( trans->fromState != 0 && trans->toState == 0 );
- trans->toState = to;
-
- if ( to != 0 ) {
- /* Attach using the inList pointer as the head pointer. */
- attachToInList( from, to, to->inList.head, trans );
- }
-}
-
-/* Detach for out/in lists or for default transition. */
-void FsmGraph::detachTrans( FsmState *from, FsmState *to, FsmTrans *trans )
-{
- assert( trans->fromState == from && trans->toState == to );
- trans->fromState = 0;
- trans->toState = 0;
-
- if ( to != 0 ) {
- /* Detach using to's inList pointer as the head. */
- detachFromInList( from, to, to->inList.head, trans );
- }
-}
-
-
-/* Detach a state from the graph. Detaches and deletes transitions in and out
- * of the state. Empties inList and outList. Removes the state from the final
- * state set. A detached state becomes useless and should be deleted. */
-void FsmGraph::detachState( FsmState *state )
-{
- /* Detach the in transitions from the inList list of transitions. */
- while ( state->inList.head != 0 ) {
- /* Get pointers to the trans and the state. */
- FsmTrans *trans = state->inList.head;
- FsmState *fromState = trans->fromState;
-
- /* Detach the transitions from the source state. */
- detachTrans( fromState, state, trans );
-
- /* Ok to delete the transition. */
- fromState->outList.detach( trans );
- delete trans;
- }
-
- /* Remove the entry points in on the machine. */
- while ( state->entryIds.length() > 0 )
- unsetEntry( state->entryIds[0], state );
-
- /* Detach out range transitions. */
- for ( TransList::Iter trans = state->outList; trans.lte(); ) {
- TransList::Iter next = trans.next();
- detachTrans( state, trans->toState, trans );
- delete trans;
- trans = next;
- }
-
- /* Delete all of the out range pointers. */
- state->outList.abandon();
-
- /* Unset final stateness before detaching from graph. */
- if ( state->stateBits & SB_ISFINAL )
- finStateSet.remove( state );
-}
-
-
-/* Duplicate a transition. Makes a new transition that is attached to the same
- * dest as srcTrans. The new transition has functions and priority taken from
- * srcTrans. Used for merging a transition in to a free spot. The trans can
- * just be dropped in. It does not conflict with an existing trans and need
- * not be crossed. Returns the new transition. */
-FsmTrans *FsmGraph::dupTrans( FsmState *from, FsmTrans *srcTrans )
-{
- /* Make a new transition. */
- FsmTrans *newTrans = new FsmTrans();
-
- /* We can attach the transition, one does not exist. */
- attachTrans( from, srcTrans->toState, newTrans );
-
- /* Call the user callback to add in the original source transition. */
- addInTrans( newTrans, srcTrans );
-
- return newTrans;
-}
-
-/* In crossing, src trans and dest trans both go to existing states. Make one
- * state from the sets of states that src and dest trans go to. */
-FsmTrans *FsmGraph::fsmAttachStates( MergeData &md, FsmState *from,
- FsmTrans *destTrans, FsmTrans *srcTrans )
-{
- /* The priorities are equal. We must merge the transitions. Does the
- * existing trans go to the state we are to attach to? ie, are we to
- * simply double up the transition? */
- FsmState *toState = srcTrans->toState;
- FsmState *existingState = destTrans->toState;
-
- if ( existingState == toState ) {
- /* The transition is a double up to the same state. Copy the src
- * trans into itself. We don't need to merge in the from out trans
- * data, that was done already. */
- addInTrans( destTrans, srcTrans );
- }
- else {
- /* The trans is not a double up. Dest trans cannot be the same as src
- * trans. Set up the state set. */
- StateSet stateSet;
-
- /* We go to all the states the existing trans goes to, plus... */
- if ( existingState->stateDictEl == 0 )
- stateSet.insert( existingState );
- else
- stateSet.insert( existingState->stateDictEl->stateSet );
-
- /* ... all the states that we have been told to go to. */
- if ( toState->stateDictEl == 0 )
- stateSet.insert( toState );
- else
- stateSet.insert( toState->stateDictEl->stateSet );
-
- /* Look for the state. If it is not there already, make it. */
- StateDictEl *lastFound;
- if ( md.stateDict.insert( stateSet, &lastFound ) ) {
- /* Make a new state representing the combination of states in
- * stateSet. It gets added to the fill list. This means that we
- * need to fill in it's transitions sometime in the future. We
- * don't do that now (ie, do not recurse). */
- FsmState *combinState = addState();
-
- /* Link up the dict element and the state. */
- lastFound->targState = combinState;
- combinState->stateDictEl = lastFound;
-
- /* Add to the fill list. */
- md.fillListAppend( combinState );
- }
-
- /* Get the state insertted/deleted. */
- FsmState *targ = lastFound->targState;
-
- /* Detach the state from existing state. */
- detachTrans( from, existingState, destTrans );
-
- /* Re-attach to the new target. */
- attachTrans( from, targ, destTrans );
-
- /* Add in src trans to the existing transition that we redirected to
- * the new state. We don't need to merge in the from out trans data,
- * that was done already. */
- addInTrans( destTrans, srcTrans );
- }
-
- return destTrans;
-}
-
-/* Two transitions are to be crossed, handle the possibility of either going
- * to the error state. */
-FsmTrans *FsmGraph::mergeTrans( MergeData &md, FsmState *from,
- FsmTrans *destTrans, FsmTrans *srcTrans )
-{
- FsmTrans *retTrans = 0;
- if ( destTrans->toState == 0 && srcTrans->toState == 0 ) {
- /* Error added into error. */
- addInTrans( destTrans, srcTrans );
- retTrans = destTrans;
- }
- else if ( destTrans->toState == 0 && srcTrans->toState != 0 ) {
- /* Non error added into error we need to detach and reattach, */
- detachTrans( from, destTrans->toState, destTrans );
- attachTrans( from, srcTrans->toState, destTrans );
- addInTrans( destTrans, srcTrans );
- retTrans = destTrans;
- }
- else if ( srcTrans->toState == 0 ) {
- /* Dest goes somewhere but src doesn't, just add it it in. */
- addInTrans( destTrans, srcTrans );
- retTrans = destTrans;
- }
- else {
- /* Both go somewhere, run the actual cross. */
- retTrans = fsmAttachStates( md, from, destTrans, srcTrans );
- }
-
- return retTrans;
-}
-
-/* Find the trans with the higher priority. If src is lower priority then dest then
- * src is ignored. If src is higher priority than dest, then src overwrites dest. If
- * the priorities are equal, then they are merged. */
-FsmTrans *FsmGraph::crossTransitions( MergeData &md, FsmState *from,
- FsmTrans *destTrans, FsmTrans *srcTrans )
-{
- FsmTrans *retTrans;
-
- /* Compare the priority of the dest and src transitions. */
- int compareRes = comparePrior( destTrans->priorTable, srcTrans->priorTable );
- if ( compareRes < 0 ) {
- /* Src trans has a higher priority than dest, src overwrites dest.
- * Detach dest and return a copy of src. */
- detachTrans( from, destTrans->toState, destTrans );
- retTrans = dupTrans( from, srcTrans );
- }
- else if ( compareRes > 0 ) {
- /* The dest trans has a higher priority, use dest. */
- retTrans = destTrans;
- }
- else {
- /* Src trans and dest trans have the same priority, they must be merged. */
- retTrans = mergeTrans( md, from, destTrans, srcTrans );
- }
-
- /* Return the transition that resulted from the cross. */
- return retTrans;
-}
-
-/* Copy the transitions in srcList to the outlist of dest. The srcList should
- * not be the outList of dest, otherwise you would be copying the contents of
- * srcList into itself as it's iterated: bad news. */
-void FsmGraph::outTransCopy( MergeData &md, FsmState *dest, FsmTrans *srcList )
-{
- /* The destination list. */
- TransList destList;
-
- /* Set up an iterator to stop at breaks. */
- PairIter<FsmTrans> outPair( dest->outList.head, srcList );
- for ( ; !outPair.end(); outPair++ ) {
- switch ( outPair.userState ) {
- case RangeInS1: {
- /* The pair iter is the authority on the keys. It may have needed
- * to break the dest range. */
- FsmTrans *destTrans = outPair.s1Tel.trans;
- destTrans->lowKey = outPair.s1Tel.lowKey;
- destTrans->highKey = outPair.s1Tel.highKey;
- destList.append( destTrans );
- break;
- }
- case RangeInS2: {
- /* Src range may get crossed with dest's default transition. */
- FsmTrans *newTrans = dupTrans( dest, outPair.s2Tel.trans );
-
- /* Set up the transition's keys and append to the dest list. */
- newTrans->lowKey = outPair.s2Tel.lowKey;
- newTrans->highKey = outPair.s2Tel.highKey;
- destList.append( newTrans );
- break;
- }
- case RangeOverlap: {
- /* Exact overlap, cross them. */
- FsmTrans *newTrans = crossTransitions( md, dest,
- outPair.s1Tel.trans, outPair.s2Tel.trans );
-
- /* Set up the transition's keys and append to the dest list. */
- newTrans->lowKey = outPair.s1Tel.lowKey;
- newTrans->highKey = outPair.s1Tel.highKey;
- destList.append( newTrans );
- break;
- }
- case BreakS1: {
- /* Since we are always writing to the dest trans, the dest needs
- * to be copied when it is broken. The copy goes into the first
- * half of the break to "break it off". */
- outPair.s1Tel.trans = dupTrans( dest, outPair.s1Tel.trans );
- break;
- }
- case BreakS2:
- break;
- }
- }
-
- /* Abandon the old outList and transfer destList into it. */
- dest->outList.transfer( destList );
-}
-
-
-/* Move all the transitions that go into src so that they go into dest. */
-void FsmGraph::inTransMove( FsmState *dest, FsmState *src )
-{
- /* Do not try to move in trans to and from the same state. */
- assert( dest != src );
-
- /* If src is the start state, dest becomes the start state. */
- if ( src == startState ) {
- unsetStartState();
- setStartState( dest );
- }
-
- /* For each entry point into, create an entry point into dest, when the
- * state is detached, the entry points to src will be removed. */
- for ( EntryIdSet::Iter enId = src->entryIds; enId.lte(); enId++ )
- changeEntry( *enId, dest, src );
-
- /* Move the transitions in inList. */
- while ( src->inList.head != 0 ) {
- /* Get trans and from state. */
- FsmTrans *trans = src->inList.head;
- FsmState *fromState = trans->fromState;
-
- /* Detach from src, reattach to dest. */
- detachTrans( fromState, src, trans );
- attachTrans( fromState, dest, trans );
- }
-}