summaryrefslogtreecommitdiff
path: root/colm/fsmmin.cc
blob: f47500bded75c596354ca0e8c56d7b5b15f5f9ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
/*
 * Copyright 2006-2018 Adrian Thurston <thurston@colm.net>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <stdbool.h>
#include <assert.h>

#include <mergesort.h>

#include "fsmgraph.h"

int FsmGraph::partitionRound( FsmState **statePtrs, MinPartition *parts, int numParts )
{
	/* Need a mergesort object and a single partition compare. */
	MergeSort<FsmState*, PartitionCompare> mergeSort;
	PartitionCompare partCompare;

	/* For each partition. */
	for ( int p = 0; p < numParts; p++ ) {
		/* Fill the pointer array with the states in the partition. */
		StateList::Iter state = parts[p].list;
		for ( int s = 0; state.lte(); state++, s++ )
			statePtrs[s] = state;

		/* Sort the states using the partitioning compare. */
		int numStates = parts[p].list.length();
		mergeSort.sort( statePtrs, numStates );

		/* Assign the states into partitions based on the results of the sort. */
		int destPart = p, firstNewPart = numParts;
		for ( int s = 1; s < numStates; s++ ) {
			/* If this state differs from the last then move to the next partition. */
			if ( partCompare.compare( statePtrs[s-1], statePtrs[s] ) < 0 ) {
				/* The new partition is the next avail spot. */
				destPart = numParts;
				numParts += 1;
			}

			/* If the state is not staying in the first partition, then
			 * transfer it to its destination partition. */
			if ( destPart != p ) {
				FsmState *state = parts[p].list.detach( statePtrs[s] );
				parts[destPart].list.append( state );
			}
		}

		/* Fix the partition pointer for all the states that got moved to a new
		 * partition. This must be done after the states are transfered so the
		 * result of the sort is not altered. */
		for ( int newPart = firstNewPart; newPart < numParts; newPart++ ) {
			StateList::Iter state = parts[newPart].list;
			for ( ; state.lte(); state++ )
				state->alg.partition = &parts[newPart];
		}
	}

	return numParts;
}

/**
 * \brief Minimize by partitioning version 1.
 *
 * Repeatedly tries to split partitions until all partitions are unsplittable.
 * Produces the most minimal FSM possible.
 */
void FsmGraph::minimizePartition1()
{
	/* Need one mergesort object and partition compares. */
	MergeSort<FsmState*, InitPartitionCompare> mergeSort;
	InitPartitionCompare initPartCompare;

	/* Nothing to do if there are no states. */
	if ( stateList.length() == 0 )
		return;

	/* 
	 * First thing is to partition the states by final state status and
	 * transition functions. This gives us an initial partitioning to work
	 * with.
	 */

	/* Make a array of pointers to states. */
	int numStates = stateList.length();
	FsmState** statePtrs = new FsmState*[numStates];

	/* Fill up an array of pointers to the states for easy sorting. */
	StateList::Iter state = stateList;
	for ( int s = 0; state.lte(); state++, s++ )
		statePtrs[s] = state;
		
	/* Sort the states using the array of states. */
	mergeSort.sort( statePtrs, numStates );

	/* An array of lists of states is used to partition the states. */
	MinPartition *parts = new MinPartition[numStates];

	/* Assign the states into partitions. */
	int destPart = 0;
	for ( int s = 0; s < numStates; s++ ) {
		/* If this state differs from the last then move to the next partition. */
		if ( s > 0 && initPartCompare.compare( statePtrs[s-1], statePtrs[s] ) < 0 ) {
			/* Move to the next partition. */
			destPart += 1;
		}

		/* Put the state into its partition. */
		statePtrs[s]->alg.partition = &parts[destPart];
		parts[destPart].list.append( statePtrs[s] );
	}

	/* We just moved all the states from the main list into partitions without
	 * taking them off the main list. So clean up the main list now. */
	stateList.abandon();

	/* Split partitions. */
	int numParts = destPart + 1;
	while ( true ) {
		/* Test all partitions for splitting. */
		int newNum = partitionRound( statePtrs, parts, numParts );

		/* When no partitions can be split, stop. */
		if ( newNum == numParts )
			break;

		numParts = newNum;
	}

	/* Fuse states in the same partition. The states will end up back on the
	 * main list. */
	fusePartitions( parts, numParts );

	/* Cleanup. */
	delete[] statePtrs;
	delete[] parts;
}

/* Split partitions that need splittting, decide which partitions might need
 * to be split as a result, continue until there are no more that might need
 * to be split. */
int FsmGraph::splitCandidates( FsmState **statePtrs, MinPartition *parts, int numParts )
{
	/* Need a mergesort and a partition compare. */
	MergeSort<FsmState*, PartitionCompare> mergeSort;
	PartitionCompare partCompare;

	/* The lists of unsplitable (partList) and splitable partitions. 
	 * Only partitions in the splitable list are check for needing splitting. */
	PartitionList partList, splittable;

	/* Initially, all partitions are born from a split (the initial
	 * partitioning) and can cause other partitions to be split. So any
	 * partition with a state with a transition out to another partition is a
	 * candidate for splitting. This will make every partition except possibly
	 * partitions of final states split candidates. */
	for ( int p = 0; p < numParts; p++ ) {
		/* Assume not active. */
		parts[p].active = false;

		/* Look for a trans out of any state in the partition. */
		for ( StateList::Iter state = parts[p].list; state.lte(); state++ ) {
			/* If there is at least one transition out to another state then 
			 * the partition becomes splittable. */
			if ( state->outList.length() > 0 ) {
				parts[p].active = true;
				break;
			}
		}

		/* If it was found active then it goes on the splittable list. */
		if ( parts[p].active )
			splittable.append( &parts[p] );
		else
			partList.append( &parts[p] );
	}

	/* While there are partitions that are splittable, pull one off and try
	 * to split it. If it splits, determine which partitions may now be split
	 * as a result of the newly split partition. */
	while ( splittable.length() > 0 ) {
		MinPartition *partition = splittable.detachFirst();

		/* Fill the pointer array with the states in the partition. */
		StateList::Iter state = partition->list;
		for ( int s = 0; state.lte(); state++, s++ )
			statePtrs[s] = state;

		/* Sort the states using the partitioning compare. */
		int numStates = partition->list.length();
		mergeSort.sort( statePtrs, numStates );

		/* Assign the states into partitions based on the results of the sort. */
		MinPartition *destPart = partition;
		int firstNewPart = numParts;
		for ( int s = 1; s < numStates; s++ ) {
			/* If this state differs from the last then move to the next partition. */
			if ( partCompare.compare( statePtrs[s-1], statePtrs[s] ) < 0 ) {
				/* The new partition is the next avail spot. */
				destPart = &parts[numParts];
				numParts += 1;
			}

			/* If the state is not staying in the first partition, then
			 * transfer it to its destination partition. */
			if ( destPart != partition ) {
				FsmState *state = partition->list.detach( statePtrs[s] );
				destPart->list.append( state );
			}
		}

		/* Fix the partition pointer for all the states that got moved to a new
		 * partition. This must be done after the states are transfered so the
		 * result of the sort is not altered. */
		int newPart;
		for ( newPart = firstNewPart; newPart < numParts; newPart++ ) {
			StateList::Iter state = parts[newPart].list;
			for ( ; state.lte(); state++ )
				state->alg.partition = &parts[newPart];
		}

		/* Put the partition we just split and any new partitions that came out
		 * of the split onto the inactive list. */
		partition->active = false;
		partList.append( partition );
		for ( newPart = firstNewPart; newPart < numParts; newPart++ ) {
			parts[newPart].active = false;
			partList.append( &parts[newPart] );
		}

		if ( destPart == partition )
			continue;

		/* Now determine which partitions are splittable as a result of
		 * splitting partition by walking the in lists of the states in
		 * partitions that got split. Partition is the faked first item in the
		 * loop. */
		MinPartition *causalPart = partition;
		newPart = firstNewPart - 1;
		while ( newPart < numParts ) {
			/* Loop all states in the causal partition. */
			StateList::Iter state = causalPart->list;
			for ( ; state.lte(); state++ ) {
				/* Walk all transition into the state and put the partition
				 * that the from state is in onto the splittable list. */
				for ( TransInList::Iter trans = state->inList; trans.lte(); trans++ ) {
					MinPartition *fromPart = trans->fromState->alg.partition;
					if ( ! fromPart->active ) {
						fromPart->active = true;
						partList.detach( fromPart );
						splittable.append( fromPart );
					}
				}
			}

			newPart += 1;
			causalPart = &parts[newPart];
		}
	}
	return numParts;
}


/**
 * \brief Minimize by partitioning version 2 (best alg).
 *
 * Repeatedly tries to split partitions that may splittable until there are no
 * more partitions that might possibly need splitting. Runs faster than
 * version 1. Produces the most minimal fsm possible.
 */
void FsmGraph::minimizePartition2()
{
	/* Need a mergesort and an initial partition compare. */
	MergeSort<FsmState*, InitPartitionCompare> mergeSort;
	InitPartitionCompare initPartCompare;

	/* Nothing to do if there are no states. */
	if ( stateList.length() == 0 )
		return;

	/* 
	 * First thing is to partition the states by final state status and
	 * transition functions. This gives us an initial partitioning to work
	 * with.
	 */

	/* Make a array of pointers to states. */
	int numStates = stateList.length();
	FsmState** statePtrs = new FsmState*[numStates];

	/* Fill up an array of pointers to the states for easy sorting. */
	StateList::Iter state = stateList;
	for ( int s = 0; state.lte(); state++, s++ )
		statePtrs[s] = state;
		
	/* Sort the states using the array of states. */
	mergeSort.sort( statePtrs, numStates );

	/* An array of lists of states is used to partition the states. */
	MinPartition *parts = new MinPartition[numStates];

	/* Assign the states into partitions. */
	int destPart = 0;
	for ( int s = 0; s < numStates; s++ ) {
		/* If this state differs from the last then move to the next partition. */
		if ( s > 0 && initPartCompare.compare( statePtrs[s-1], statePtrs[s] ) < 0 ) {
			/* Move to the next partition. */
			destPart += 1;
		}

		/* Put the state into its partition. */
		statePtrs[s]->alg.partition = &parts[destPart];
		parts[destPart].list.append( statePtrs[s] );
	}

	/* We just moved all the states from the main list into partitions without
	 * taking them off the main list. So clean up the main list now. */
	stateList.abandon();

	/* Split partitions. */
	int numParts = splitCandidates( statePtrs, parts, destPart+1 );

	/* Fuse states in the same partition. The states will end up back on the
	 * main list. */
	fusePartitions( parts, numParts );

	/* Cleanup. */
	delete[] statePtrs;
	delete[] parts;
}

void FsmGraph::initialMarkRound( MarkIndex &markIndex )
{
	/* P and q for walking pairs. */
	FsmState *p = stateList.head, *q;

	/* Need an initial partition compare. */
	InitPartitionCompare initPartCompare;

	/* Walk all unordered pairs of (p, q) where p != q.
	 * The second depth of the walk stops before reaching p. This
	 * gives us all unordered pairs of states (p, q) where p != q. */
	while ( p != 0 ) {
		q = stateList.head;
		while ( q != p ) {
			/* If the states differ on final state status, out transitions or
			 * any transition data then they should be separated on the initial
			 * round. */
			if ( initPartCompare.compare( p, q ) != 0 )
				markIndex.markPair( p->alg.stateNum, q->alg.stateNum );

			q = q->next;
		}
		p = p->next;
	}
}

bool FsmGraph::markRound( MarkIndex &markIndex )
{
	/* P an q for walking pairs. Take note if any pair gets marked. */
	FsmState *p = stateList.head, *q;
	bool pairWasMarked = false;

	/* Need a mark comparison. */
	MarkCompare markCompare;

	/* Walk all unordered pairs of (p, q) where p != q.
	 * The second depth of the walk stops before reaching p. This
	 * gives us all unordered pairs of states (p, q) where p != q. */
	while ( p != 0 ) {
		q = stateList.head;
		while ( q != p ) {
			/* Should we mark the pair? */
			if ( !markIndex.isPairMarked( p->alg.stateNum, q->alg.stateNum ) ) {
				if ( markCompare.shouldMark( markIndex, p, q ) ) {
					markIndex.markPair( p->alg.stateNum, q->alg.stateNum );
					pairWasMarked = true;
				}
			}
			q = q->next;
		}
		p = p->next;
	}

	return pairWasMarked;
}


/**
 * \brief Minimize by pair marking.
 *
 * Decides if each pair of states is distinct or not. Uses O(n^2) memory and
 * should only be used on small graphs. Produces the most minmimal FSM
 * possible.
 */
void FsmGraph::minimizeStable()
{
	/* Set the state numbers. */
	setStateNumbers( 0 );

	/* This keeps track of which pairs have been marked. */
	MarkIndex markIndex( stateList.length() );

	/* Mark pairs where final stateness, out trans, or trans data differ. */
	initialMarkRound( markIndex );

	/* While the last round of marking succeeded in marking a state
	 * continue to do another round. */
	int modified = markRound( markIndex );
	while (modified)
		modified = markRound( markIndex );

	/* Merge pairs that are unmarked. */
	fuseUnmarkedPairs( markIndex );
}

bool FsmGraph::minimizeRound()
{
	/* Nothing to do if there are no states. */
	if ( stateList.length() == 0 )
		return false;

	/* Need a mergesort on approx compare and an approx compare. */
	MergeSort<FsmState*, ApproxCompare> mergeSort;
	ApproxCompare approxCompare;

	/* Fill up an array of pointers to the states. */
	FsmState **statePtrs = new FsmState*[stateList.length()];
	StateList::Iter state = stateList;
	for ( int s = 0; state.lte(); state++, s++ )
		statePtrs[s] = state;

	bool modified = false;

	/* Sort The list. */
	mergeSort.sort( statePtrs, stateList.length() );

	/* Walk the list looking for duplicates next to each other, 
	 * merge in any duplicates. */
	FsmState **pLast = statePtrs;
	FsmState **pState = statePtrs + 1;
	for ( int i = 1; i < stateList.length(); i++, pState++ ) {
		if ( approxCompare.compare( *pLast, *pState ) == 0 ) {
			/* Last and pState are the same, so fuse together. Move forward
			 * with pState but not with pLast. If any more are identical, we
			 * must */
			fuseEquivStates( *pLast, *pState );
			modified = true;
		}
		else {
			/* Last and this are different, do not set to merge them. Move
			 * pLast to the current (it may be way behind from merging many
			 * states) and pState forward one to consider the next pair. */
			pLast = pState;
		}
	}
	delete[] statePtrs;
	return modified;
}

/**
 * \brief Minmimize by an approximation.
 *
 * Repeatedly tries to find states with transitions out to the same set of
 * states on the same set of keys until no more identical states can be found.
 * Does not produce the most minimial FSM possible.
 */
void FsmGraph::minimizeApproximate()
{
	/* While the last minimization round succeeded in compacting states,
	 * continue to try to compact states. */
	while ( true ) {
		bool modified = minimizeRound();
		if ( ! modified )
			break;
	}
}


/* Remove states that have no path to them from the start state. Recursively
 * traverses the graph marking states that have paths into them. Then removes
 * all states that did not get marked. */
void FsmGraph::removeUnreachableStates()
{
	/* Misfit accounting should be off and there should be no states on the
	 * misfit list. */
	assert( !misfitAccounting && misfitList.length() == 0 );

	/* Mark all the states that can be reached 
	 * through the existing set of entry points. */
	markReachableFromHere( startState );
	for ( EntryMap::Iter en = entryPoints; en.lte(); en++ )
		markReachableFromHere( en->value );

	/* Delete all states that are not marked
	 * and unmark the ones that are marked. */
	FsmState *state = stateList.head;
	while ( state ) {
		FsmState *next = state->next;

		if ( state->stateBits & SB_ISMARKED )
			state->stateBits &= ~ SB_ISMARKED;
		else {
			detachState( state );
			stateList.detach( state );
			delete state;
		}

		state = next;
	}
}

bool FsmGraph::outListCovers( FsmState *state )
{
	/* Must be at least one range to cover. */
	if ( state->outList.length() == 0 )
		return false;
	
	/* The first must start at the lower bound. */
	TransList::Iter trans = state->outList.first();
	if ( keyOps->minKey < trans->lowKey )
		return false;

	/* Loop starts at second el. */
	trans.increment();

	/* Loop checks lower against prev upper. */
	for ( ; trans.lte(); trans++ ) {
		/* Lower end of the trans must be one greater than the
		 * previous' high end. */
		Key lowKey = trans->lowKey;
		lowKey.decrement();
		if ( trans->prev->highKey < lowKey )
			return false;
	}

	/* Require that the last range extends to the upper bound. */
	trans = state->outList.last();
	if ( trans->highKey < keyOps->maxKey )
		return false;

	return true;
}

/* Remove states that that do not lead to a final states. Works recursivly traversing
 * the graph in reverse (starting from all final states) and marking seen states. Then
 * removes states that did not get marked. */
void FsmGraph::removeDeadEndStates()
{
	/* Misfit accounting should be off and there should be no states on the
	 * misfit list. */
	assert( !misfitAccounting && misfitList.length() == 0 );

	/* Mark all states that have paths to the final states. */
	FsmState **st = finStateSet.data;
	int nst = finStateSet.length();
	for ( int i = 0; i < nst; i++, st++ )
		markReachableFromHereReverse( *st );

	/* Start state gets honorary marking. If the machine accepts nothing we
	 * still want the start state to hang around. This must be done after the
	 * recursive call on all the final states so that it does not cause the
	 * start state in transitions to be skipped when the start state is
	 * visited by the traversal. */
	startState->stateBits |= SB_ISMARKED;

	/* Delete all states that are not marked
	 * and unmark the ones that are marked. */
	FsmState *state = stateList.head;
	while ( state != 0 ) {
		FsmState *next = state->next;

		if ( state->stateBits & SB_ISMARKED  )
			state->stateBits &= ~ SB_ISMARKED;
		else {
			detachState( state );
			stateList.detach( state );
			delete state;
		}
		
		state = next;
	}
}

/* Remove states on the misfit list. To work properly misfit accounting should
 * be on when this is called. The detaching of a state will likely cause
 * another misfit to be collected and it can then be removed. */
void FsmGraph::removeMisfits()
{
	while ( misfitList.length() > 0 ) {
		/* Get the first state. */
		FsmState *state = misfitList.head;

		/* Detach and delete. */
		detachState( state );

		/* The state was previously on the misfit list and detaching can only
		 * remove in transitions so the state must still be on the misfit
		 * list. */
		misfitList.detach( state );
		delete state;
	}
}

/* Fuse src into dest because they have been deemed equivalent states.
 * Involves moving transitions into src to go into dest and invoking
 * callbacks. Src is deleted detached from the graph and deleted. */
void FsmGraph::fuseEquivStates( FsmState *dest, FsmState *src )
{
	/* This would get ugly. */
	assert( dest != src );

	/* Cur is a duplicate. We can merge it with trail. */
	inTransMove( dest, src );

	detachState( src );
	stateList.detach( src );
	delete src;
}

void FsmGraph::fuseUnmarkedPairs( MarkIndex &markIndex )
{
	FsmState *p = stateList.head, *nextP, *q;

	/* Definition: The primary state of an equivalence class is the first state
	 * encounterd that belongs to the equivalence class. All equivalence
	 * classes have primary state including equivalence classes with one state
	 * in it. */

	/* For each unmarked pair merge p into q and delete p. q is always the
	 * primary state of it's equivalence class. We wouldn't have landed on it
	 * here if it were not, because it would have been deleted.
	 *
	 * Proof that q is the primaray state of it's equivalence class: Assume q
	 * is not the primary state of it's equivalence class, then it would be
	 * merged into some state that came before it and thus p would be
	 * equivalent to that state. But q is the first state that p is equivalent
	 * to so we have a contradiction. */

	/* Walk all unordered pairs of (p, q) where p != q.
	 * The second depth of the walk stops before reaching p. This
	 * gives us all unordered pairs of states (p, q) where p != q. */
	while ( p != 0 ) {
		nextP = p->next;

		q = stateList.head;
		while ( q != p ) {
			/* If one of p or q is a final state then mark. */
			if ( ! markIndex.isPairMarked( p->alg.stateNum, q->alg.stateNum ) ) {
				fuseEquivStates( q, p );
				break;
			}
			q = q->next;
		}
		p = nextP;
	}
}

void FsmGraph::fusePartitions( MinPartition *parts, int numParts )
{
	/* For each partition, fuse state 2, 3, ... into state 1. */
	for ( int p = 0; p < numParts; p++ ) {
		/* Assume that there will always be at least one state. */
		FsmState *first = parts[p].list.head, *toFuse = first->next;

		/* Put the first state back onto the main state list. Don't bother
		 * removing it from the partition list first. */
		stateList.append( first );

		/* Fuse the rest of the state into the first. */
		while ( toFuse != 0 ) {
			/* Save the next. We will trash it before it is needed. */
			FsmState *next = toFuse->next;

			/* Put the state to be fused in to the first back onto the main
			 * list before it is fuse.  the graph. The state needs to be on
			 * the main list for the detach from the graph to work.  Don't
			 * bother removing the state from the partition list first. We
			 * need not maintain it. */
			stateList.append( toFuse );

			/* Now fuse to the first. */
			fuseEquivStates( first, toFuse );

			/* Go to the next that we saved before trashing the next pointer. */
			toFuse = next;
		}

		/* We transfered the states from the partition list into the main list without
		 * removing the states from the partition list first. Clean it up. */
		parts[p].list.abandon();
	}
}


/* Merge neighboring transitions go to the same state and have the same
 * transitions data. */
void FsmGraph::compressTransitions()
{
	for ( StateList::Iter st = stateList; st.lte(); st++ ) {
		if ( st->outList.length() > 1 ) {
			for ( TransList::Iter trans = st->outList, next = trans.next(); next.lte();  ) {
				Key nextLow = next->lowKey;
				nextLow.decrement();
				if ( trans->highKey == nextLow && trans->toState == next->toState &&
					CmpActionTable::compare( trans->actionTable, next->actionTable ) == 0 )
				{
					trans->highKey = next->highKey;
					st->outList.detach( next );
					detachTrans( next->fromState, next->toState, next );
					delete next;
					next = trans.next();
				}
				else {
					trans.increment();
					next.increment();
				}
			}
		}
	}
}