summaryrefslogtreecommitdiff
path: root/lib/hwasan/hwasan_allocator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/hwasan/hwasan_allocator.cpp')
-rw-r--r--lib/hwasan/hwasan_allocator.cpp460
1 files changed, 460 insertions, 0 deletions
diff --git a/lib/hwasan/hwasan_allocator.cpp b/lib/hwasan/hwasan_allocator.cpp
new file mode 100644
index 000000000..fd5248796
--- /dev/null
+++ b/lib/hwasan/hwasan_allocator.cpp
@@ -0,0 +1,460 @@
+//===-- hwasan_allocator.cpp ------------------------ ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of HWAddressSanitizer.
+//
+// HWAddressSanitizer allocator.
+//===----------------------------------------------------------------------===//
+
+#include "sanitizer_common/sanitizer_atomic.h"
+#include "sanitizer_common/sanitizer_errno.h"
+#include "sanitizer_common/sanitizer_stackdepot.h"
+#include "hwasan.h"
+#include "hwasan_allocator.h"
+#include "hwasan_mapping.h"
+#include "hwasan_malloc_bisect.h"
+#include "hwasan_thread.h"
+#include "hwasan_report.h"
+
+#if HWASAN_WITH_INTERCEPTORS
+DEFINE_REAL(void *, realloc, void *ptr, uptr size)
+DEFINE_REAL(void, free, void *ptr)
+#endif
+
+namespace __hwasan {
+
+static Allocator allocator;
+static AllocatorCache fallback_allocator_cache;
+static SpinMutex fallback_mutex;
+static atomic_uint8_t hwasan_allocator_tagging_enabled;
+
+static const tag_t kFallbackAllocTag = 0xBB;
+static const tag_t kFallbackFreeTag = 0xBC;
+
+enum RightAlignMode {
+ kRightAlignNever,
+ kRightAlignSometimes,
+ kRightAlignAlways
+};
+
+// These two variables are initialized from flags()->malloc_align_right
+// in HwasanAllocatorInit and are never changed afterwards.
+static RightAlignMode right_align_mode = kRightAlignNever;
+static bool right_align_8 = false;
+
+// Initialized in HwasanAllocatorInit, an never changed.
+static ALIGNED(16) u8 tail_magic[kShadowAlignment];
+
+bool HwasanChunkView::IsAllocated() const {
+ return metadata_ && metadata_->alloc_context_id && metadata_->requested_size;
+}
+
+// Aligns the 'addr' right to the granule boundary.
+static uptr AlignRight(uptr addr, uptr requested_size) {
+ uptr tail_size = requested_size % kShadowAlignment;
+ if (!tail_size) return addr;
+ if (right_align_8)
+ return tail_size > 8 ? addr : addr + 8;
+ return addr + kShadowAlignment - tail_size;
+}
+
+uptr HwasanChunkView::Beg() const {
+ if (metadata_ && metadata_->right_aligned)
+ return AlignRight(block_, metadata_->requested_size);
+ return block_;
+}
+uptr HwasanChunkView::End() const {
+ return Beg() + UsedSize();
+}
+uptr HwasanChunkView::UsedSize() const {
+ return metadata_->requested_size;
+}
+u32 HwasanChunkView::GetAllocStackId() const {
+ return metadata_->alloc_context_id;
+}
+
+uptr HwasanChunkView::ActualSize() const {
+ return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_));
+}
+
+bool HwasanChunkView::FromSmallHeap() const {
+ return allocator.FromPrimary(reinterpret_cast<void *>(block_));
+}
+
+void GetAllocatorStats(AllocatorStatCounters s) {
+ allocator.GetStats(s);
+}
+
+void HwasanAllocatorInit() {
+ atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
+ !flags()->disable_allocator_tagging);
+ SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
+ allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
+ switch (flags()->malloc_align_right) {
+ case 0: break;
+ case 1:
+ right_align_mode = kRightAlignSometimes;
+ right_align_8 = false;
+ break;
+ case 2:
+ right_align_mode = kRightAlignAlways;
+ right_align_8 = false;
+ break;
+ case 8:
+ right_align_mode = kRightAlignSometimes;
+ right_align_8 = true;
+ break;
+ case 9:
+ right_align_mode = kRightAlignAlways;
+ right_align_8 = true;
+ break;
+ default:
+ Report("ERROR: unsupported value of malloc_align_right flag: %d\n",
+ flags()->malloc_align_right);
+ Die();
+ }
+ for (uptr i = 0; i < kShadowAlignment; i++)
+ tail_magic[i] = GetCurrentThread()->GenerateRandomTag();
+}
+
+void AllocatorSwallowThreadLocalCache(AllocatorCache *cache) {
+ allocator.SwallowCache(cache);
+}
+
+static uptr TaggedSize(uptr size) {
+ if (!size) size = 1;
+ uptr new_size = RoundUpTo(size, kShadowAlignment);
+ CHECK_GE(new_size, size);
+ return new_size;
+}
+
+static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment,
+ bool zeroise) {
+ if (orig_size > kMaxAllowedMallocSize) {
+ if (AllocatorMayReturnNull()) {
+ Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
+ orig_size);
+ return nullptr;
+ }
+ ReportAllocationSizeTooBig(orig_size, kMaxAllowedMallocSize, stack);
+ }
+
+ alignment = Max(alignment, kShadowAlignment);
+ uptr size = TaggedSize(orig_size);
+ Thread *t = GetCurrentThread();
+ void *allocated;
+ if (t) {
+ allocated = allocator.Allocate(t->allocator_cache(), size, alignment);
+ } else {
+ SpinMutexLock l(&fallback_mutex);
+ AllocatorCache *cache = &fallback_allocator_cache;
+ allocated = allocator.Allocate(cache, size, alignment);
+ }
+ if (UNLIKELY(!allocated)) {
+ SetAllocatorOutOfMemory();
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportOutOfMemory(size, stack);
+ }
+ Metadata *meta =
+ reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
+ meta->requested_size = static_cast<u32>(orig_size);
+ meta->alloc_context_id = StackDepotPut(*stack);
+ meta->right_aligned = false;
+ if (zeroise) {
+ internal_memset(allocated, 0, size);
+ } else if (flags()->max_malloc_fill_size > 0) {
+ uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
+ internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
+ }
+ if (!right_align_mode)
+ internal_memcpy(reinterpret_cast<u8 *>(allocated) + orig_size, tail_magic,
+ size - orig_size);
+
+ void *user_ptr = allocated;
+ // Tagging can only be skipped when both tag_in_malloc and tag_in_free are
+ // false. When tag_in_malloc = false and tag_in_free = true malloc needs to
+ // retag to 0.
+ if ((flags()->tag_in_malloc || flags()->tag_in_free) &&
+ atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) {
+ tag_t tag = flags()->tag_in_malloc && malloc_bisect(stack, orig_size)
+ ? (t ? t->GenerateRandomTag() : kFallbackAllocTag)
+ : 0;
+ user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, tag);
+ }
+
+ if ((orig_size % kShadowAlignment) && (alignment <= kShadowAlignment) &&
+ right_align_mode) {
+ uptr as_uptr = reinterpret_cast<uptr>(user_ptr);
+ if (right_align_mode == kRightAlignAlways ||
+ GetTagFromPointer(as_uptr) & 1) { // use a tag bit as a random bit.
+ user_ptr = reinterpret_cast<void *>(AlignRight(as_uptr, orig_size));
+ meta->right_aligned = 1;
+ }
+ }
+
+ HWASAN_MALLOC_HOOK(user_ptr, size);
+ return user_ptr;
+}
+
+static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
+ CHECK(tagged_ptr);
+ tag_t ptr_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr));
+ tag_t mem_tag = *reinterpret_cast<tag_t *>(
+ MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
+ return ptr_tag == mem_tag;
+}
+
+static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
+ CHECK(tagged_ptr);
+ HWASAN_FREE_HOOK(tagged_ptr);
+
+ if (!PointerAndMemoryTagsMatch(tagged_ptr))
+ ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
+
+ void *untagged_ptr = UntagPtr(tagged_ptr);
+ void *aligned_ptr = reinterpret_cast<void *>(
+ RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
+ Metadata *meta =
+ reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
+ uptr orig_size = meta->requested_size;
+ u32 free_context_id = StackDepotPut(*stack);
+ u32 alloc_context_id = meta->alloc_context_id;
+
+ // Check tail magic.
+ uptr tagged_size = TaggedSize(orig_size);
+ if (flags()->free_checks_tail_magic && !right_align_mode && orig_size) {
+ uptr tail_size = tagged_size - orig_size;
+ CHECK_LT(tail_size, kShadowAlignment);
+ void *tail_beg = reinterpret_cast<void *>(
+ reinterpret_cast<uptr>(aligned_ptr) + orig_size);
+ if (tail_size && internal_memcmp(tail_beg, tail_magic, tail_size))
+ ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr),
+ orig_size, tail_size, tail_magic);
+ }
+
+ meta->requested_size = 0;
+ meta->alloc_context_id = 0;
+ // This memory will not be reused by anyone else, so we are free to keep it
+ // poisoned.
+ Thread *t = GetCurrentThread();
+ if (flags()->max_free_fill_size > 0) {
+ uptr fill_size =
+ Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size);
+ internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size);
+ }
+ if (flags()->tag_in_free && malloc_bisect(stack, 0) &&
+ atomic_load_relaxed(&hwasan_allocator_tagging_enabled))
+ TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size),
+ t ? t->GenerateRandomTag() : kFallbackFreeTag);
+ if (t) {
+ allocator.Deallocate(t->allocator_cache(), aligned_ptr);
+ if (auto *ha = t->heap_allocations())
+ ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_context_id,
+ free_context_id, static_cast<u32>(orig_size)});
+ } else {
+ SpinMutexLock l(&fallback_mutex);
+ AllocatorCache *cache = &fallback_allocator_cache;
+ allocator.Deallocate(cache, aligned_ptr);
+ }
+}
+
+static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old,
+ uptr new_size, uptr alignment) {
+ if (!PointerAndMemoryTagsMatch(tagged_ptr_old))
+ ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr_old));
+
+ void *tagged_ptr_new =
+ HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
+ if (tagged_ptr_old && tagged_ptr_new) {
+ void *untagged_ptr_old = UntagPtr(tagged_ptr_old);
+ Metadata *meta =
+ reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
+ internal_memcpy(UntagPtr(tagged_ptr_new), untagged_ptr_old,
+ Min(new_size, static_cast<uptr>(meta->requested_size)));
+ HwasanDeallocate(stack, tagged_ptr_old);
+ }
+ return tagged_ptr_new;
+}
+
+static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
+ if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportCallocOverflow(nmemb, size, stack);
+ }
+ return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
+}
+
+HwasanChunkView FindHeapChunkByAddress(uptr address) {
+ void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
+ if (!block)
+ return HwasanChunkView();
+ Metadata *metadata =
+ reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
+ return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
+}
+
+static uptr AllocationSize(const void *tagged_ptr) {
+ const void *untagged_ptr = UntagPtr(tagged_ptr);
+ if (!untagged_ptr) return 0;
+ const void *beg = allocator.GetBlockBegin(untagged_ptr);
+ Metadata *b = (Metadata *)allocator.GetMetaData(untagged_ptr);
+ if (b->right_aligned) {
+ if (beg != reinterpret_cast<void *>(RoundDownTo(
+ reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)))
+ return 0;
+ } else {
+ if (beg != untagged_ptr) return 0;
+ }
+ return b->requested_size;
+}
+
+void *hwasan_malloc(uptr size, StackTrace *stack) {
+ return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
+}
+
+void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
+ return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
+}
+
+void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
+ if (!ptr)
+ return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
+
+#if HWASAN_WITH_INTERCEPTORS
+ // A tag of 0 means that this is a system allocator allocation, so we must use
+ // the system allocator to realloc it.
+ if (!flags()->disable_allocator_tagging && GetTagFromPointer((uptr)ptr) == 0)
+ return REAL(realloc)(ptr, size);
+#endif
+
+ if (size == 0) {
+ HwasanDeallocate(stack, ptr);
+ return nullptr;
+ }
+ return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
+}
+
+void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
+ if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
+ errno = errno_ENOMEM;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportReallocArrayOverflow(nmemb, size, stack);
+ }
+ return hwasan_realloc(ptr, nmemb * size, stack);
+}
+
+void *hwasan_valloc(uptr size, StackTrace *stack) {
+ return SetErrnoOnNull(
+ HwasanAllocate(stack, size, GetPageSizeCached(), false));
+}
+
+void *hwasan_pvalloc(uptr size, StackTrace *stack) {
+ uptr PageSize = GetPageSizeCached();
+ if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
+ errno = errno_ENOMEM;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportPvallocOverflow(size, stack);
+ }
+ // pvalloc(0) should allocate one page.
+ size = size ? RoundUpTo(size, PageSize) : PageSize;
+ return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
+}
+
+void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
+ if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
+ errno = errno_EINVAL;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportInvalidAlignedAllocAlignment(size, alignment, stack);
+ }
+ return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
+}
+
+void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
+ if (UNLIKELY(!IsPowerOfTwo(alignment))) {
+ errno = errno_EINVAL;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportInvalidAllocationAlignment(alignment, stack);
+ }
+ return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
+}
+
+int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
+ StackTrace *stack) {
+ if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
+ if (AllocatorMayReturnNull())
+ return errno_EINVAL;
+ ReportInvalidPosixMemalignAlignment(alignment, stack);
+ }
+ void *ptr = HwasanAllocate(stack, size, alignment, false);
+ if (UNLIKELY(!ptr))
+ // OOM error is already taken care of by HwasanAllocate.
+ return errno_ENOMEM;
+ CHECK(IsAligned((uptr)ptr, alignment));
+ *memptr = ptr;
+ return 0;
+}
+
+void hwasan_free(void *ptr, StackTrace *stack) {
+#if HWASAN_WITH_INTERCEPTORS
+ // A tag of 0 means that this is a system allocator allocation, so we must use
+ // the system allocator to free it.
+ if (!flags()->disable_allocator_tagging && GetTagFromPointer((uptr)ptr) == 0)
+ return REAL(free)(ptr);
+#endif
+
+ return HwasanDeallocate(stack, ptr);
+}
+
+} // namespace __hwasan
+
+using namespace __hwasan;
+
+void __hwasan_enable_allocator_tagging() {
+ atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
+}
+
+void __hwasan_disable_allocator_tagging() {
+#if HWASAN_WITH_INTERCEPTORS
+ // Allocator tagging must be enabled for the system allocator fallback to work
+ // correctly. This means that we can't disable it at runtime if it was enabled
+ // at startup since that might result in our deallocations going to the system
+ // allocator. If tagging was disabled at startup we avoid this problem by
+ // disabling the fallback altogether.
+ CHECK(flags()->disable_allocator_tagging);
+#endif
+
+ atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
+}
+
+uptr __sanitizer_get_current_allocated_bytes() {
+ uptr stats[AllocatorStatCount];
+ allocator.GetStats(stats);
+ return stats[AllocatorStatAllocated];
+}
+
+uptr __sanitizer_get_heap_size() {
+ uptr stats[AllocatorStatCount];
+ allocator.GetStats(stats);
+ return stats[AllocatorStatMapped];
+}
+
+uptr __sanitizer_get_free_bytes() { return 1; }
+
+uptr __sanitizer_get_unmapped_bytes() { return 1; }
+
+uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
+
+int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
+
+uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }