summaryrefslogtreecommitdiff
path: root/lib/asan/asan_allocator.cpp
blob: c9e9f5a93d0d123c48bb0e8b62a2218813ca3e69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
//===-- asan_allocator.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Implementation of ASan's memory allocator, 2-nd version.
// This variant uses the allocator from sanitizer_common, i.e. the one shared
// with ThreadSanitizer and MemorySanitizer.
//
//===----------------------------------------------------------------------===//

#include "asan_allocator.h"
#include "asan_mapping.h"
#include "asan_poisoning.h"
#include "asan_report.h"
#include "asan_stack.h"
#include "asan_thread.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_list.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_quarantine.h"
#include "lsan/lsan_common.h"

namespace __asan {

// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
// We use adaptive redzones: for larger allocation larger redzones are used.
static u32 RZLog2Size(u32 rz_log) {
  CHECK_LT(rz_log, 8);
  return 16 << rz_log;
}

static u32 RZSize2Log(u32 rz_size) {
  CHECK_GE(rz_size, 16);
  CHECK_LE(rz_size, 2048);
  CHECK(IsPowerOfTwo(rz_size));
  u32 res = Log2(rz_size) - 4;
  CHECK_EQ(rz_size, RZLog2Size(res));
  return res;
}

static AsanAllocator &get_allocator();

// The memory chunk allocated from the underlying allocator looks like this:
// L L L L L L H H U U U U U U R R
//   L -- left redzone words (0 or more bytes)
//   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
//   U -- user memory.
//   R -- right redzone (0 or more bytes)
// ChunkBase consists of ChunkHeader and other bytes that overlap with user
// memory.

// If the left redzone is greater than the ChunkHeader size we store a magic
// value in the first uptr word of the memory block and store the address of
// ChunkBase in the next uptr.
// M B L L L L L L L L L  H H U U U U U U
//   |                    ^
//   ---------------------|
//   M -- magic value kAllocBegMagic
//   B -- address of ChunkHeader pointing to the first 'H'
static const uptr kAllocBegMagic = 0xCC6E96B9;

struct ChunkHeader {
  // 1-st 8 bytes.
  u32 chunk_state       : 8;  // Must be first.
  u32 alloc_tid         : 24;

  u32 free_tid          : 24;
  u32 from_memalign     : 1;
  u32 alloc_type        : 2;
  u32 rz_log            : 3;
  u32 lsan_tag          : 2;
  // 2-nd 8 bytes
  // This field is used for small sizes. For large sizes it is equal to
  // SizeClassMap::kMaxSize and the actual size is stored in the
  // SecondaryAllocator's metadata.
  u32 user_requested_size : 29;
  // align < 8 -> 0
  // else      -> log2(min(align, 512)) - 2
  u32 user_requested_alignment_log : 3;
  u32 alloc_context_id;
};

struct ChunkBase : ChunkHeader {
  // Header2, intersects with user memory.
  u32 free_context_id;
};

static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
COMPILER_CHECK(kChunkHeaderSize == 16);
COMPILER_CHECK(kChunkHeader2Size <= 16);

// Every chunk of memory allocated by this allocator can be in one of 3 states:
// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
enum {
  CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
  CHUNK_ALLOCATED  = 2,
  CHUNK_QUARANTINE = 3
};

struct AsanChunk: ChunkBase {
  uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
  uptr UsedSize(bool locked_version = false) {
    if (user_requested_size != SizeClassMap::kMaxSize)
      return user_requested_size;
    return *reinterpret_cast<uptr *>(
               get_allocator().GetMetaData(AllocBeg(locked_version)));
  }
  void *AllocBeg(bool locked_version = false) {
    if (from_memalign) {
      if (locked_version)
        return get_allocator().GetBlockBeginFastLocked(
            reinterpret_cast<void *>(this));
      return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
    }
    return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
  }
  bool AddrIsInside(uptr addr, bool locked_version = false) {
    return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version));
  }
};

struct QuarantineCallback {
  QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
      : cache_(cache),
        stack_(stack) {
  }

  void Recycle(AsanChunk *m) {
    CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
    atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed);
    CHECK_NE(m->alloc_tid, kInvalidTid);
    CHECK_NE(m->free_tid, kInvalidTid);
    PoisonShadow(m->Beg(),
                 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
                 kAsanHeapLeftRedzoneMagic);
    void *p = reinterpret_cast<void *>(m->AllocBeg());
    if (p != m) {
      uptr *alloc_magic = reinterpret_cast<uptr *>(p);
      CHECK_EQ(alloc_magic[0], kAllocBegMagic);
      // Clear the magic value, as allocator internals may overwrite the
      // contents of deallocated chunk, confusing GetAsanChunk lookup.
      alloc_magic[0] = 0;
      CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m));
    }

    // Statistics.
    AsanStats &thread_stats = GetCurrentThreadStats();
    thread_stats.real_frees++;
    thread_stats.really_freed += m->UsedSize();

    get_allocator().Deallocate(cache_, p);
  }

  void *Allocate(uptr size) {
    void *res = get_allocator().Allocate(cache_, size, 1);
    // TODO(alekseys): Consider making quarantine OOM-friendly.
    if (UNLIKELY(!res))
      ReportOutOfMemory(size, stack_);
    return res;
  }

  void Deallocate(void *p) {
    get_allocator().Deallocate(cache_, p);
  }

 private:
  AllocatorCache* const cache_;
  BufferedStackTrace* const stack_;
};

typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
typedef AsanQuarantine::Cache QuarantineCache;

void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
  PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
  // Statistics.
  AsanStats &thread_stats = GetCurrentThreadStats();
  thread_stats.mmaps++;
  thread_stats.mmaped += size;
}
void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
  PoisonShadow(p, size, 0);
  // We are about to unmap a chunk of user memory.
  // Mark the corresponding shadow memory as not needed.
  FlushUnneededASanShadowMemory(p, size);
  // Statistics.
  AsanStats &thread_stats = GetCurrentThreadStats();
  thread_stats.munmaps++;
  thread_stats.munmaped += size;
}

// We can not use THREADLOCAL because it is not supported on some of the
// platforms we care about (OSX 10.6, Android).
// static THREADLOCAL AllocatorCache cache;
AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
  CHECK(ms);
  return &ms->allocator_cache;
}

QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
  CHECK(ms);
  CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
  return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
}

void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
  quarantine_size_mb = f->quarantine_size_mb;
  thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
  min_redzone = f->redzone;
  max_redzone = f->max_redzone;
  may_return_null = cf->allocator_may_return_null;
  alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
  release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
}

void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
  f->quarantine_size_mb = quarantine_size_mb;
  f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
  f->redzone = min_redzone;
  f->max_redzone = max_redzone;
  cf->allocator_may_return_null = may_return_null;
  f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
  cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
}

struct Allocator {
  static const uptr kMaxAllowedMallocSize =
      FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);

  AsanAllocator allocator;
  AsanQuarantine quarantine;
  StaticSpinMutex fallback_mutex;
  AllocatorCache fallback_allocator_cache;
  QuarantineCache fallback_quarantine_cache;

  atomic_uint8_t rss_limit_exceeded;

  // ------------------- Options --------------------------
  atomic_uint16_t min_redzone;
  atomic_uint16_t max_redzone;
  atomic_uint8_t alloc_dealloc_mismatch;

  // ------------------- Initialization ------------------------
  explicit Allocator(LinkerInitialized)
      : quarantine(LINKER_INITIALIZED),
        fallback_quarantine_cache(LINKER_INITIALIZED) {}

  void CheckOptions(const AllocatorOptions &options) const {
    CHECK_GE(options.min_redzone, 16);
    CHECK_GE(options.max_redzone, options.min_redzone);
    CHECK_LE(options.max_redzone, 2048);
    CHECK(IsPowerOfTwo(options.min_redzone));
    CHECK(IsPowerOfTwo(options.max_redzone));
  }

  void SharedInitCode(const AllocatorOptions &options) {
    CheckOptions(options);
    quarantine.Init((uptr)options.quarantine_size_mb << 20,
                    (uptr)options.thread_local_quarantine_size_kb << 10);
    atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
                 memory_order_release);
    atomic_store(&min_redzone, options.min_redzone, memory_order_release);
    atomic_store(&max_redzone, options.max_redzone, memory_order_release);
  }

  void InitLinkerInitialized(const AllocatorOptions &options) {
    SetAllocatorMayReturnNull(options.may_return_null);
    allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
    SharedInitCode(options);
  }

  bool RssLimitExceeded() {
    return atomic_load(&rss_limit_exceeded, memory_order_relaxed);
  }

  void SetRssLimitExceeded(bool limit_exceeded) {
    atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed);
  }

  void RePoisonChunk(uptr chunk) {
    // This could be a user-facing chunk (with redzones), or some internal
    // housekeeping chunk, like TransferBatch. Start by assuming the former.
    AsanChunk *ac = GetAsanChunk((void *)chunk);
    uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)ac);
    uptr beg = ac->Beg();
    uptr end = ac->Beg() + ac->UsedSize(true);
    uptr chunk_end = chunk + allocated_size;
    if (chunk < beg && beg < end && end <= chunk_end &&
        ac->chunk_state == CHUNK_ALLOCATED) {
      // Looks like a valid AsanChunk in use, poison redzones only.
      PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
      uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY);
      FastPoisonShadowPartialRightRedzone(
          end_aligned_down, end - end_aligned_down,
          chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
    } else {
      // This is either not an AsanChunk or freed or quarantined AsanChunk.
      // In either case, poison everything.
      PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
    }
  }

  void ReInitialize(const AllocatorOptions &options) {
    SetAllocatorMayReturnNull(options.may_return_null);
    allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
    SharedInitCode(options);

    // Poison all existing allocation's redzones.
    if (CanPoisonMemory()) {
      allocator.ForceLock();
      allocator.ForEachChunk(
          [](uptr chunk, void *alloc) {
            ((Allocator *)alloc)->RePoisonChunk(chunk);
          },
          this);
      allocator.ForceUnlock();
    }
  }

  void GetOptions(AllocatorOptions *options) const {
    options->quarantine_size_mb = quarantine.GetSize() >> 20;
    options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10;
    options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
    options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
    options->may_return_null = AllocatorMayReturnNull();
    options->alloc_dealloc_mismatch =
        atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
    options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
  }

  // -------------------- Helper methods. -------------------------
  uptr ComputeRZLog(uptr user_requested_size) {
    u32 rz_log =
      user_requested_size <= 64        - 16   ? 0 :
      user_requested_size <= 128       - 32   ? 1 :
      user_requested_size <= 512       - 64   ? 2 :
      user_requested_size <= 4096      - 128  ? 3 :
      user_requested_size <= (1 << 14) - 256  ? 4 :
      user_requested_size <= (1 << 15) - 512  ? 5 :
      user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
    u32 min_rz = atomic_load(&min_redzone, memory_order_acquire);
    u32 max_rz = atomic_load(&max_redzone, memory_order_acquire);
    return Min(Max(rz_log, RZSize2Log(min_rz)), RZSize2Log(max_rz));
  }

  static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
    if (user_requested_alignment < 8)
      return 0;
    if (user_requested_alignment > 512)
      user_requested_alignment = 512;
    return Log2(user_requested_alignment) - 2;
  }

  static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
    if (user_requested_alignment_log == 0)
      return 0;
    return 1LL << (user_requested_alignment_log + 2);
  }

  // We have an address between two chunks, and we want to report just one.
  AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
                         AsanChunk *right_chunk) {
    // Prefer an allocated chunk over freed chunk and freed chunk
    // over available chunk.
    if (left_chunk->chunk_state != right_chunk->chunk_state) {
      if (left_chunk->chunk_state == CHUNK_ALLOCATED)
        return left_chunk;
      if (right_chunk->chunk_state == CHUNK_ALLOCATED)
        return right_chunk;
      if (left_chunk->chunk_state == CHUNK_QUARANTINE)
        return left_chunk;
      if (right_chunk->chunk_state == CHUNK_QUARANTINE)
        return right_chunk;
    }
    // Same chunk_state: choose based on offset.
    sptr l_offset = 0, r_offset = 0;
    CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
    CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
    if (l_offset < r_offset)
      return left_chunk;
    return right_chunk;
  }

  // -------------------- Allocation/Deallocation routines ---------------
  void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
                 AllocType alloc_type, bool can_fill) {
    if (UNLIKELY(!asan_inited))
      AsanInitFromRtl();
    if (RssLimitExceeded()) {
      if (AllocatorMayReturnNull())
        return nullptr;
      ReportRssLimitExceeded(stack);
    }
    Flags &fl = *flags();
    CHECK(stack);
    const uptr min_alignment = SHADOW_GRANULARITY;
    const uptr user_requested_alignment_log =
        ComputeUserRequestedAlignmentLog(alignment);
    if (alignment < min_alignment)
      alignment = min_alignment;
    if (size == 0) {
      // We'd be happy to avoid allocating memory for zero-size requests, but
      // some programs/tests depend on this behavior and assume that malloc
      // would not return NULL even for zero-size allocations. Moreover, it
      // looks like operator new should never return NULL, and results of
      // consecutive "new" calls must be different even if the allocated size
      // is zero.
      size = 1;
    }
    CHECK(IsPowerOfTwo(alignment));
    uptr rz_log = ComputeRZLog(size);
    uptr rz_size = RZLog2Size(rz_log);
    uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
    uptr needed_size = rounded_size + rz_size;
    if (alignment > min_alignment)
      needed_size += alignment;
    bool using_primary_allocator = true;
    // If we are allocating from the secondary allocator, there will be no
    // automatic right redzone, so add the right redzone manually.
    if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
      needed_size += rz_size;
      using_primary_allocator = false;
    }
    CHECK(IsAligned(needed_size, min_alignment));
    if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
      if (AllocatorMayReturnNull()) {
        Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
               (void*)size);
        return nullptr;
      }
      ReportAllocationSizeTooBig(size, needed_size, kMaxAllowedMallocSize,
                                 stack);
    }

    AsanThread *t = GetCurrentThread();
    void *allocated;
    if (t) {
      AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
      allocated = allocator.Allocate(cache, needed_size, 8);
    } else {
      SpinMutexLock l(&fallback_mutex);
      AllocatorCache *cache = &fallback_allocator_cache;
      allocated = allocator.Allocate(cache, needed_size, 8);
    }
    if (UNLIKELY(!allocated)) {
      SetAllocatorOutOfMemory();
      if (AllocatorMayReturnNull())
        return nullptr;
      ReportOutOfMemory(size, stack);
    }

    if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
      // Heap poisoning is enabled, but the allocator provides an unpoisoned
      // chunk. This is possible if CanPoisonMemory() was false for some
      // time, for example, due to flags()->start_disabled.
      // Anyway, poison the block before using it for anything else.
      uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
      PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
    }

    uptr alloc_beg = reinterpret_cast<uptr>(allocated);
    uptr alloc_end = alloc_beg + needed_size;
    uptr beg_plus_redzone = alloc_beg + rz_size;
    uptr user_beg = beg_plus_redzone;
    if (!IsAligned(user_beg, alignment))
      user_beg = RoundUpTo(user_beg, alignment);
    uptr user_end = user_beg + size;
    CHECK_LE(user_end, alloc_end);
    uptr chunk_beg = user_beg - kChunkHeaderSize;
    AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
    m->alloc_type = alloc_type;
    m->rz_log = rz_log;
    u32 alloc_tid = t ? t->tid() : 0;
    m->alloc_tid = alloc_tid;
    CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
    m->free_tid = kInvalidTid;
    m->from_memalign = user_beg != beg_plus_redzone;
    if (alloc_beg != chunk_beg) {
      CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
      reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
      reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
    }
    if (using_primary_allocator) {
      CHECK(size);
      m->user_requested_size = size;
      CHECK(allocator.FromPrimary(allocated));
    } else {
      CHECK(!allocator.FromPrimary(allocated));
      m->user_requested_size = SizeClassMap::kMaxSize;
      uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
      meta[0] = size;
      meta[1] = chunk_beg;
    }
    m->user_requested_alignment_log = user_requested_alignment_log;

    m->alloc_context_id = StackDepotPut(*stack);

    uptr size_rounded_down_to_granularity =
        RoundDownTo(size, SHADOW_GRANULARITY);
    // Unpoison the bulk of the memory region.
    if (size_rounded_down_to_granularity)
      PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
    // Deal with the end of the region if size is not aligned to granularity.
    if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
      u8 *shadow =
          (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
      *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
    }

    AsanStats &thread_stats = GetCurrentThreadStats();
    thread_stats.mallocs++;
    thread_stats.malloced += size;
    thread_stats.malloced_redzones += needed_size - size;
    if (needed_size > SizeClassMap::kMaxSize)
      thread_stats.malloc_large++;
    else
      thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;

    void *res = reinterpret_cast<void *>(user_beg);
    if (can_fill && fl.max_malloc_fill_size) {
      uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
      REAL(memset)(res, fl.malloc_fill_byte, fill_size);
    }
#if CAN_SANITIZE_LEAKS
    m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
                                                 : __lsan::kDirectlyLeaked;
#endif
    // Must be the last mutation of metadata in this function.
    atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
    ASAN_MALLOC_HOOK(res, size);
    return res;
  }

  // Set quarantine flag if chunk is allocated, issue ASan error report on
  // available and quarantined chunks. Return true on success, false otherwise.
  bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
                                   BufferedStackTrace *stack) {
    u8 old_chunk_state = CHUNK_ALLOCATED;
    // Flip the chunk_state atomically to avoid race on double-free.
    if (!atomic_compare_exchange_strong((atomic_uint8_t *)m, &old_chunk_state,
                                        CHUNK_QUARANTINE,
                                        memory_order_acquire)) {
      ReportInvalidFree(ptr, old_chunk_state, stack);
      // It's not safe to push a chunk in quarantine on invalid free.
      return false;
    }
    CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
    return true;
  }

  // Expects the chunk to already be marked as quarantined by using
  // AtomicallySetQuarantineFlagIfAllocated.
  void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
    CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
    CHECK_GE(m->alloc_tid, 0);
    if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
      CHECK_EQ(m->free_tid, kInvalidTid);
    AsanThread *t = GetCurrentThread();
    m->free_tid = t ? t->tid() : 0;
    m->free_context_id = StackDepotPut(*stack);

    Flags &fl = *flags();
    if (fl.max_free_fill_size > 0) {
      // We have to skip the chunk header, it contains free_context_id.
      uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
      if (m->UsedSize() >= kChunkHeader2Size) {  // Skip Header2 in user area.
        uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
        size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
        REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
      }
    }

    // Poison the region.
    PoisonShadow(m->Beg(),
                 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
                 kAsanHeapFreeMagic);

    AsanStats &thread_stats = GetCurrentThreadStats();
    thread_stats.frees++;
    thread_stats.freed += m->UsedSize();

    // Push into quarantine.
    if (t) {
      AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
      AllocatorCache *ac = GetAllocatorCache(ms);
      quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
                     m->UsedSize());
    } else {
      SpinMutexLock l(&fallback_mutex);
      AllocatorCache *ac = &fallback_allocator_cache;
      quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
                     m, m->UsedSize());
    }
  }

  void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
                  BufferedStackTrace *stack, AllocType alloc_type) {
    uptr p = reinterpret_cast<uptr>(ptr);
    if (p == 0) return;

    uptr chunk_beg = p - kChunkHeaderSize;
    AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);

    // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
    // malloc. Don't report an invalid free in this case.
    if (SANITIZER_WINDOWS &&
        !get_allocator().PointerIsMine(ptr)) {
      if (!IsSystemHeapAddress(p))
        ReportFreeNotMalloced(p, stack);
      return;
    }

    ASAN_FREE_HOOK(ptr);

    // Must mark the chunk as quarantined before any changes to its metadata.
    // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
    if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;

    if (m->alloc_type != alloc_type) {
      if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
        ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
                                (AllocType)alloc_type);
      }
    } else {
      if (flags()->new_delete_type_mismatch &&
          (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
          ((delete_size && delete_size != m->UsedSize()) ||
           ComputeUserRequestedAlignmentLog(delete_alignment) !=
               m->user_requested_alignment_log)) {
        ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
      }
    }

    QuarantineChunk(m, ptr, stack);
  }

  void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
    CHECK(old_ptr && new_size);
    uptr p = reinterpret_cast<uptr>(old_ptr);
    uptr chunk_beg = p - kChunkHeaderSize;
    AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);

    AsanStats &thread_stats = GetCurrentThreadStats();
    thread_stats.reallocs++;
    thread_stats.realloced += new_size;

    void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
    if (new_ptr) {
      u8 chunk_state = m->chunk_state;
      if (chunk_state != CHUNK_ALLOCATED)
        ReportInvalidFree(old_ptr, chunk_state, stack);
      CHECK_NE(REAL(memcpy), nullptr);
      uptr memcpy_size = Min(new_size, m->UsedSize());
      // If realloc() races with free(), we may start copying freed memory.
      // However, we will report racy double-free later anyway.
      REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
      Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
    }
    return new_ptr;
  }

  void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
    if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
      if (AllocatorMayReturnNull())
        return nullptr;
      ReportCallocOverflow(nmemb, size, stack);
    }
    void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
    // If the memory comes from the secondary allocator no need to clear it
    // as it comes directly from mmap.
    if (ptr && allocator.FromPrimary(ptr))
      REAL(memset)(ptr, 0, nmemb * size);
    return ptr;
  }

  void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
    if (chunk_state == CHUNK_QUARANTINE)
      ReportDoubleFree((uptr)ptr, stack);
    else
      ReportFreeNotMalloced((uptr)ptr, stack);
  }

  void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
    AllocatorCache *ac = GetAllocatorCache(ms);
    quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
    allocator.SwallowCache(ac);
  }

  // -------------------------- Chunk lookup ----------------------

  // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
  AsanChunk *GetAsanChunk(void *alloc_beg) {
    if (!alloc_beg) return nullptr;
    if (!allocator.FromPrimary(alloc_beg)) {
      uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
      AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
      return m;
    }
    uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
    if (alloc_magic[0] == kAllocBegMagic)
      return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
    return reinterpret_cast<AsanChunk *>(alloc_beg);
  }

  AsanChunk *GetAsanChunkByAddr(uptr p) {
    void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
    return GetAsanChunk(alloc_beg);
  }

  // Allocator must be locked when this function is called.
  AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
    void *alloc_beg =
        allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
    return GetAsanChunk(alloc_beg);
  }

  uptr AllocationSize(uptr p) {
    AsanChunk *m = GetAsanChunkByAddr(p);
    if (!m) return 0;
    if (m->chunk_state != CHUNK_ALLOCATED) return 0;
    if (m->Beg() != p) return 0;
    return m->UsedSize();
  }

  AsanChunkView FindHeapChunkByAddress(uptr addr) {
    AsanChunk *m1 = GetAsanChunkByAddr(addr);
    if (!m1) return AsanChunkView(m1);
    sptr offset = 0;
    if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
      // The address is in the chunk's left redzone, so maybe it is actually
      // a right buffer overflow from the other chunk to the left.
      // Search a bit to the left to see if there is another chunk.
      AsanChunk *m2 = nullptr;
      for (uptr l = 1; l < GetPageSizeCached(); l++) {
        m2 = GetAsanChunkByAddr(addr - l);
        if (m2 == m1) continue;  // Still the same chunk.
        break;
      }
      if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
        m1 = ChooseChunk(addr, m2, m1);
    }
    return AsanChunkView(m1);
  }

  void Purge(BufferedStackTrace *stack) {
    AsanThread *t = GetCurrentThread();
    if (t) {
      AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
      quarantine.DrainAndRecycle(GetQuarantineCache(ms),
                                 QuarantineCallback(GetAllocatorCache(ms),
                                                    stack));
    }
    {
      SpinMutexLock l(&fallback_mutex);
      quarantine.DrainAndRecycle(&fallback_quarantine_cache,
                                 QuarantineCallback(&fallback_allocator_cache,
                                                    stack));
    }

    allocator.ForceReleaseToOS();
  }

  void PrintStats() {
    allocator.PrintStats();
    quarantine.PrintStats();
  }

  void ForceLock() {
    allocator.ForceLock();
    fallback_mutex.Lock();
  }

  void ForceUnlock() {
    fallback_mutex.Unlock();
    allocator.ForceUnlock();
  }
};

static Allocator instance(LINKER_INITIALIZED);

static AsanAllocator &get_allocator() {
  return instance.allocator;
}

bool AsanChunkView::IsValid() const {
  return chunk_ && chunk_->chunk_state != CHUNK_AVAILABLE;
}
bool AsanChunkView::IsAllocated() const {
  return chunk_ && chunk_->chunk_state == CHUNK_ALLOCATED;
}
bool AsanChunkView::IsQuarantined() const {
  return chunk_ && chunk_->chunk_state == CHUNK_QUARANTINE;
}
uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
u32 AsanChunkView::UserRequestedAlignment() const {
  return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
}
uptr AsanChunkView::AllocTid() const { return chunk_->alloc_tid; }
uptr AsanChunkView::FreeTid() const { return chunk_->free_tid; }
AllocType AsanChunkView::GetAllocType() const {
  return (AllocType)chunk_->alloc_type;
}

static StackTrace GetStackTraceFromId(u32 id) {
  CHECK(id);
  StackTrace res = StackDepotGet(id);
  CHECK(res.trace);
  return res;
}

u32 AsanChunkView::GetAllocStackId() const { return chunk_->alloc_context_id; }
u32 AsanChunkView::GetFreeStackId() const { return chunk_->free_context_id; }

StackTrace AsanChunkView::GetAllocStack() const {
  return GetStackTraceFromId(GetAllocStackId());
}

StackTrace AsanChunkView::GetFreeStack() const {
  return GetStackTraceFromId(GetFreeStackId());
}

void InitializeAllocator(const AllocatorOptions &options) {
  instance.InitLinkerInitialized(options);
}

void ReInitializeAllocator(const AllocatorOptions &options) {
  instance.ReInitialize(options);
}

void GetAllocatorOptions(AllocatorOptions *options) {
  instance.GetOptions(options);
}

AsanChunkView FindHeapChunkByAddress(uptr addr) {
  return instance.FindHeapChunkByAddress(addr);
}
AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
  return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
}

void AsanThreadLocalMallocStorage::CommitBack() {
  GET_STACK_TRACE_MALLOC;
  instance.CommitBack(this, &stack);
}

void PrintInternalAllocatorStats() {
  instance.PrintStats();
}

void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
  instance.Deallocate(ptr, 0, 0, stack, alloc_type);
}

void asan_delete(void *ptr, uptr size, uptr alignment,
                 BufferedStackTrace *stack, AllocType alloc_type) {
  instance.Deallocate(ptr, size, alignment, stack, alloc_type);
}

void *asan_malloc(uptr size, BufferedStackTrace *stack) {
  return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
}

void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
  return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
}

void *asan_reallocarray(void *p, uptr nmemb, uptr size,
                        BufferedStackTrace *stack) {
  if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
    errno = errno_ENOMEM;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportReallocArrayOverflow(nmemb, size, stack);
  }
  return asan_realloc(p, nmemb * size, stack);
}

void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
  if (!p)
    return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
  if (size == 0) {
    if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
      instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
      return nullptr;
    }
    // Allocate a size of 1 if we shouldn't free() on Realloc to 0
    size = 1;
  }
  return SetErrnoOnNull(instance.Reallocate(p, size, stack));
}

void *asan_valloc(uptr size, BufferedStackTrace *stack) {
  return SetErrnoOnNull(
      instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
}

void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
  uptr PageSize = GetPageSizeCached();
  if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
    errno = errno_ENOMEM;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportPvallocOverflow(size, stack);
  }
  // pvalloc(0) should allocate one page.
  size = size ? RoundUpTo(size, PageSize) : PageSize;
  return SetErrnoOnNull(
      instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
}

void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
                    AllocType alloc_type) {
  if (UNLIKELY(!IsPowerOfTwo(alignment))) {
    errno = errno_EINVAL;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportInvalidAllocationAlignment(alignment, stack);
  }
  return SetErrnoOnNull(
      instance.Allocate(size, alignment, stack, alloc_type, true));
}

void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
  if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
    errno = errno_EINVAL;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportInvalidAlignedAllocAlignment(size, alignment, stack);
  }
  return SetErrnoOnNull(
      instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
}

int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
                        BufferedStackTrace *stack) {
  if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
    if (AllocatorMayReturnNull())
      return errno_EINVAL;
    ReportInvalidPosixMemalignAlignment(alignment, stack);
  }
  void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
  if (UNLIKELY(!ptr))
    // OOM error is already taken care of by Allocate.
    return errno_ENOMEM;
  CHECK(IsAligned((uptr)ptr, alignment));
  *memptr = ptr;
  return 0;
}

uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
  if (!ptr) return 0;
  uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
  if (flags()->check_malloc_usable_size && (usable_size == 0)) {
    GET_STACK_TRACE_FATAL(pc, bp);
    ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
  }
  return usable_size;
}

uptr asan_mz_size(const void *ptr) {
  return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
}

void asan_mz_force_lock() {
  instance.ForceLock();
}

void asan_mz_force_unlock() {
  instance.ForceUnlock();
}

void AsanSoftRssLimitExceededCallback(bool limit_exceeded) {
  instance.SetRssLimitExceeded(limit_exceeded);
}

} // namespace __asan

// --- Implementation of LSan-specific functions --- {{{1
namespace __lsan {
void LockAllocator() {
  __asan::get_allocator().ForceLock();
}

void UnlockAllocator() {
  __asan::get_allocator().ForceUnlock();
}

void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
  *begin = (uptr)&__asan::get_allocator();
  *end = *begin + sizeof(__asan::get_allocator());
}

uptr PointsIntoChunk(void* p) {
  uptr addr = reinterpret_cast<uptr>(p);
  __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
  if (!m) return 0;
  uptr chunk = m->Beg();
  if (m->chunk_state != __asan::CHUNK_ALLOCATED)
    return 0;
  if (m->AddrIsInside(addr, /*locked_version=*/true))
    return chunk;
  if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(/*locked_version*/ true),
                                  addr))
    return chunk;
  return 0;
}

uptr GetUserBegin(uptr chunk) {
  __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
  CHECK(m);
  return m->Beg();
}

LsanMetadata::LsanMetadata(uptr chunk) {
  metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
}

bool LsanMetadata::allocated() const {
  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
  return m->chunk_state == __asan::CHUNK_ALLOCATED;
}

ChunkTag LsanMetadata::tag() const {
  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
  return static_cast<ChunkTag>(m->lsan_tag);
}

void LsanMetadata::set_tag(ChunkTag value) {
  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
  m->lsan_tag = value;
}

uptr LsanMetadata::requested_size() const {
  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
  return m->UsedSize(/*locked_version=*/true);
}

u32 LsanMetadata::stack_trace_id() const {
  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
  return m->alloc_context_id;
}

void ForEachChunk(ForEachChunkCallback callback, void *arg) {
  __asan::get_allocator().ForEachChunk(callback, arg);
}

IgnoreObjectResult IgnoreObjectLocked(const void *p) {
  uptr addr = reinterpret_cast<uptr>(p);
  __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
  if (!m) return kIgnoreObjectInvalid;
  if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
    if (m->lsan_tag == kIgnored)
      return kIgnoreObjectAlreadyIgnored;
    m->lsan_tag = __lsan::kIgnored;
    return kIgnoreObjectSuccess;
  } else {
    return kIgnoreObjectInvalid;
  }
}
}  // namespace __lsan

// ---------------------- Interface ---------------- {{{1
using namespace __asan;

// ASan allocator doesn't reserve extra bytes, so normally we would
// just return "size". We don't want to expose our redzone sizes, etc here.
uptr __sanitizer_get_estimated_allocated_size(uptr size) {
  return size;
}

int __sanitizer_get_ownership(const void *p) {
  uptr ptr = reinterpret_cast<uptr>(p);
  return instance.AllocationSize(ptr) > 0;
}

uptr __sanitizer_get_allocated_size(const void *p) {
  if (!p) return 0;
  uptr ptr = reinterpret_cast<uptr>(p);
  uptr allocated_size = instance.AllocationSize(ptr);
  // Die if p is not malloced or if it is already freed.
  if (allocated_size == 0) {
    GET_STACK_TRACE_FATAL_HERE;
    ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
  }
  return allocated_size;
}

void __sanitizer_purge_allocator() {
  GET_STACK_TRACE_MALLOC;
  instance.Purge(&stack);
}

#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default (no-op) implementation of malloc hooks.
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
                             void *ptr, uptr size) {
  (void)ptr;
  (void)size;
}

SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) {
  (void)ptr;
}
#endif