summaryrefslogtreecommitdiff
path: root/lib/hwasan/hwasan_allocator.cpp
blob: b4fae5820d0a1749663f251c7a3f1dc841741aed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
//===-- hwasan_allocator.cpp ------------------------ ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// HWAddressSanitizer allocator.
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_checks.h"
#include "hwasan_mapping.h"
#include "hwasan_malloc_bisect.h"
#include "hwasan_thread.h"
#include "hwasan_report.h"

#if HWASAN_WITH_INTERCEPTORS
DEFINE_REAL(void *, realloc, void *ptr, uptr size)
DEFINE_REAL(void, free, void *ptr)
#endif

namespace __hwasan {

static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static SpinMutex fallback_mutex;
static atomic_uint8_t hwasan_allocator_tagging_enabled;

static const tag_t kFallbackAllocTag = 0xBB;
static const tag_t kFallbackFreeTag = 0xBC;

enum RightAlignMode {
  kRightAlignNever,
  kRightAlignSometimes,
  kRightAlignAlways
};

// Initialized in HwasanAllocatorInit, an never changed.
static ALIGNED(16) u8 tail_magic[kShadowAlignment - 1];

bool HwasanChunkView::IsAllocated() const {
  return metadata_ && metadata_->alloc_context_id && metadata_->requested_size;
}

// Aligns the 'addr' right to the granule boundary.
static uptr AlignRight(uptr addr, uptr requested_size) {
  uptr tail_size = requested_size % kShadowAlignment;
  if (!tail_size) return addr;
  return addr + kShadowAlignment - tail_size;
}

uptr HwasanChunkView::Beg() const {
  if (metadata_ && metadata_->right_aligned)
    return AlignRight(block_, metadata_->requested_size);
  return block_;
}
uptr HwasanChunkView::End() const {
  return Beg() + UsedSize();
}
uptr HwasanChunkView::UsedSize() const {
  return metadata_->requested_size;
}
u32 HwasanChunkView::GetAllocStackId() const {
  return metadata_->alloc_context_id;
}

uptr HwasanChunkView::ActualSize() const {
  return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_));
}

bool HwasanChunkView::FromSmallHeap() const {
  return allocator.FromPrimary(reinterpret_cast<void *>(block_));
}

void GetAllocatorStats(AllocatorStatCounters s) {
  allocator.GetStats(s);
}

void HwasanAllocatorInit() {
  atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
                       !flags()->disable_allocator_tagging);
  SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
  allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
  for (uptr i = 0; i < sizeof(tail_magic); i++)
    tail_magic[i] = GetCurrentThread()->GenerateRandomTag();
}

void AllocatorSwallowThreadLocalCache(AllocatorCache *cache) {
  allocator.SwallowCache(cache);
}

static uptr TaggedSize(uptr size) {
  if (!size) size = 1;
  uptr new_size = RoundUpTo(size, kShadowAlignment);
  CHECK_GE(new_size, size);
  return new_size;
}

static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment,
                            bool zeroise) {
  if (orig_size > kMaxAllowedMallocSize) {
    if (AllocatorMayReturnNull()) {
      Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
             orig_size);
      return nullptr;
    }
    ReportAllocationSizeTooBig(orig_size, kMaxAllowedMallocSize, stack);
  }

  alignment = Max(alignment, kShadowAlignment);
  uptr size = TaggedSize(orig_size);
  Thread *t = GetCurrentThread();
  void *allocated;
  if (t) {
    allocated = allocator.Allocate(t->allocator_cache(), size, alignment);
  } else {
    SpinMutexLock l(&fallback_mutex);
    AllocatorCache *cache = &fallback_allocator_cache;
    allocated = allocator.Allocate(cache, size, alignment);
  }
  if (UNLIKELY(!allocated)) {
    SetAllocatorOutOfMemory();
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportOutOfMemory(size, stack);
  }
  Metadata *meta =
      reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
  meta->requested_size = static_cast<u32>(orig_size);
  meta->alloc_context_id = StackDepotPut(*stack);
  meta->right_aligned = false;
  if (zeroise) {
    internal_memset(allocated, 0, size);
  } else if (flags()->max_malloc_fill_size > 0) {
    uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
    internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
  }
  if (size != orig_size) {
    internal_memcpy(reinterpret_cast<u8 *>(allocated) + orig_size, tail_magic,
                    size - orig_size - 1);
  }

  void *user_ptr = allocated;
  // Tagging can only be skipped when both tag_in_malloc and tag_in_free are
  // false. When tag_in_malloc = false and tag_in_free = true malloc needs to
  // retag to 0.
  if ((flags()->tag_in_malloc || flags()->tag_in_free) &&
      atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) {
    if (flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) {
      tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag;
      uptr tag_size = orig_size ? orig_size : 1;
      uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment);
      user_ptr =
          (void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag);
      if (full_granule_size != tag_size) {
        u8 *short_granule =
            reinterpret_cast<u8 *>(allocated) + full_granule_size;
        TagMemoryAligned((uptr)short_granule, kShadowAlignment,
                         tag_size % kShadowAlignment);
        short_granule[kShadowAlignment - 1] = tag;
      }
    } else {
      user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0);
    }
  }

  HWASAN_MALLOC_HOOK(user_ptr, size);
  return user_ptr;
}

static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
  CHECK(tagged_ptr);
  uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr);
  tag_t mem_tag = *reinterpret_cast<tag_t *>(
      MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
  return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1);
}

static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
  CHECK(tagged_ptr);
  HWASAN_FREE_HOOK(tagged_ptr);

  if (!PointerAndMemoryTagsMatch(tagged_ptr))
    ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));

  void *untagged_ptr = UntagPtr(tagged_ptr);
  void *aligned_ptr = reinterpret_cast<void *>(
      RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
  Metadata *meta =
      reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
  uptr orig_size = meta->requested_size;
  u32 free_context_id = StackDepotPut(*stack);
  u32 alloc_context_id = meta->alloc_context_id;

  // Check tail magic.
  uptr tagged_size = TaggedSize(orig_size);
  if (flags()->free_checks_tail_magic && orig_size &&
      tagged_size != orig_size) {
    uptr tail_size = tagged_size - orig_size - 1;
    CHECK_LT(tail_size, kShadowAlignment);
    void *tail_beg = reinterpret_cast<void *>(
        reinterpret_cast<uptr>(aligned_ptr) + orig_size);
    if (tail_size && internal_memcmp(tail_beg, tail_magic, tail_size))
      ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr),
                            orig_size, tail_magic);
  }

  meta->requested_size = 0;
  meta->alloc_context_id = 0;
  // This memory will not be reused by anyone else, so we are free to keep it
  // poisoned.
  Thread *t = GetCurrentThread();
  if (flags()->max_free_fill_size > 0) {
    uptr fill_size =
        Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size);
    internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size);
  }
  if (flags()->tag_in_free && malloc_bisect(stack, 0) &&
      atomic_load_relaxed(&hwasan_allocator_tagging_enabled))
    TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size),
                     t ? t->GenerateRandomTag() : kFallbackFreeTag);
  if (t) {
    allocator.Deallocate(t->allocator_cache(), aligned_ptr);
    if (auto *ha = t->heap_allocations())
      ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_context_id,
                free_context_id, static_cast<u32>(orig_size)});
  } else {
    SpinMutexLock l(&fallback_mutex);
    AllocatorCache *cache = &fallback_allocator_cache;
    allocator.Deallocate(cache, aligned_ptr);
  }
}

static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old,
                              uptr new_size, uptr alignment) {
  if (!PointerAndMemoryTagsMatch(tagged_ptr_old))
    ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr_old));

  void *tagged_ptr_new =
      HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
  if (tagged_ptr_old && tagged_ptr_new) {
    void *untagged_ptr_old =  UntagPtr(tagged_ptr_old);
    Metadata *meta =
        reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
    internal_memcpy(UntagPtr(tagged_ptr_new), untagged_ptr_old,
                    Min(new_size, static_cast<uptr>(meta->requested_size)));
    HwasanDeallocate(stack, tagged_ptr_old);
  }
  return tagged_ptr_new;
}

static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
  if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportCallocOverflow(nmemb, size, stack);
  }
  return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
}

HwasanChunkView FindHeapChunkByAddress(uptr address) {
  void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
  if (!block)
    return HwasanChunkView();
  Metadata *metadata =
      reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
  return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
}

static uptr AllocationSize(const void *tagged_ptr) {
  const void *untagged_ptr = UntagPtr(tagged_ptr);
  if (!untagged_ptr) return 0;
  const void *beg = allocator.GetBlockBegin(untagged_ptr);
  Metadata *b = (Metadata *)allocator.GetMetaData(untagged_ptr);
  if (b->right_aligned) {
    if (beg != reinterpret_cast<void *>(RoundDownTo(
                   reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)))
      return 0;
  } else {
    if (beg != untagged_ptr) return 0;
  }
  return b->requested_size;
}

void *hwasan_malloc(uptr size, StackTrace *stack) {
  return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
}

void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
  return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
}

void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
  if (!ptr)
    return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));

#if HWASAN_WITH_INTERCEPTORS
  // A tag of 0 means that this is a system allocator allocation, so we must use
  // the system allocator to realloc it.
  if (!flags()->disable_allocator_tagging && GetTagFromPointer((uptr)ptr) == 0)
    return REAL(realloc)(ptr, size);
#endif

  if (size == 0) {
    HwasanDeallocate(stack, ptr);
    return nullptr;
  }
  return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
}

void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
  if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
    errno = errno_ENOMEM;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportReallocArrayOverflow(nmemb, size, stack);
  }
  return hwasan_realloc(ptr, nmemb * size, stack);
}

void *hwasan_valloc(uptr size, StackTrace *stack) {
  return SetErrnoOnNull(
      HwasanAllocate(stack, size, GetPageSizeCached(), false));
}

void *hwasan_pvalloc(uptr size, StackTrace *stack) {
  uptr PageSize = GetPageSizeCached();
  if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
    errno = errno_ENOMEM;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportPvallocOverflow(size, stack);
  }
  // pvalloc(0) should allocate one page.
  size = size ? RoundUpTo(size, PageSize) : PageSize;
  return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
}

void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
  if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
    errno = errno_EINVAL;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportInvalidAlignedAllocAlignment(size, alignment, stack);
  }
  return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}

void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
  if (UNLIKELY(!IsPowerOfTwo(alignment))) {
    errno = errno_EINVAL;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportInvalidAllocationAlignment(alignment, stack);
  }
  return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}

int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
                        StackTrace *stack) {
  if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
    if (AllocatorMayReturnNull())
      return errno_EINVAL;
    ReportInvalidPosixMemalignAlignment(alignment, stack);
  }
  void *ptr = HwasanAllocate(stack, size, alignment, false);
  if (UNLIKELY(!ptr))
    // OOM error is already taken care of by HwasanAllocate.
    return errno_ENOMEM;
  CHECK(IsAligned((uptr)ptr, alignment));
  *memptr = ptr;
  return 0;
}

void hwasan_free(void *ptr, StackTrace *stack) {
#if HWASAN_WITH_INTERCEPTORS
  // A tag of 0 means that this is a system allocator allocation, so we must use
  // the system allocator to free it.
  if (!flags()->disable_allocator_tagging && GetTagFromPointer((uptr)ptr) == 0)
    return REAL(free)(ptr);
#endif

  return HwasanDeallocate(stack, ptr);
}

}  // namespace __hwasan

using namespace __hwasan;

void __hwasan_enable_allocator_tagging() {
  atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
}

void __hwasan_disable_allocator_tagging() {
#if HWASAN_WITH_INTERCEPTORS
  // Allocator tagging must be enabled for the system allocator fallback to work
  // correctly. This means that we can't disable it at runtime if it was enabled
  // at startup since that might result in our deallocations going to the system
  // allocator. If tagging was disabled at startup we avoid this problem by
  // disabling the fallback altogether.
  CHECK(flags()->disable_allocator_tagging);
#endif

  atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
}

uptr __sanitizer_get_current_allocated_bytes() {
  uptr stats[AllocatorStatCount];
  allocator.GetStats(stats);
  return stats[AllocatorStatAllocated];
}

uptr __sanitizer_get_heap_size() {
  uptr stats[AllocatorStatCount];
  allocator.GetStats(stats);
  return stats[AllocatorStatMapped];
}

uptr __sanitizer_get_free_bytes() { return 1; }

uptr __sanitizer_get_unmapped_bytes() { return 1; }

uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }

int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }

uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }