summaryrefslogtreecommitdiff
path: root/lib/scudo/standalone/tests/wrappers_c_test.cpp
blob: 28c21ebc8da75f9b7747b45bcc7b85c97403d415 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//===-- wrappers_c_test.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "platform.h"

#include "gtest/gtest.h"

#include <limits.h>
#include <malloc.h>
#include <stdlib.h>
#include <unistd.h>

extern "C" {
void malloc_enable(void);
void malloc_disable(void);
int malloc_iterate(uintptr_t base, size_t size,
                   void (*callback)(uintptr_t base, size_t size, void *arg),
                   void *arg);
}

// Note that every C allocation function in the test binary will be fulfilled
// by Scudo (this includes the gtest APIs, etc.), which is a test by itself.
// But this might also lead to unexpected side-effects, since the allocation and
// deallocation operations in the TEST functions will coexist with others (see
// the EXPECT_DEATH comment below).

// We have to use a small quarantine to make sure that our double-free tests
// trigger. Otherwise EXPECT_DEATH ends up reallocating the chunk that was just
// freed (this depends on the size obviously) and the following free succeeds.
extern "C" __attribute__((visibility("default"))) const char *
__scudo_default_options() {
  return "quarantine_size_kb=256:thread_local_quarantine_size_kb=128:"
         "quarantine_max_chunk_size=512";
}

static const size_t Size = 100U;

TEST(ScudoWrappersCTest, Malloc) {
  void *P = malloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size, malloc_usable_size(P));
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % FIRST_32_SECOND_64(8U, 16U), 0U);
  EXPECT_DEATH(
      free(reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(P) | 1U)), "");
  free(P);
  EXPECT_DEATH(free(P), "");

  P = malloc(0U);
  EXPECT_NE(P, nullptr);
  free(P);

  errno = 0;
  EXPECT_EQ(malloc(SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
}

TEST(ScudoWrappersCTest, Calloc) {
  void *P = calloc(1U, Size);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size, malloc_usable_size(P));
  for (size_t I = 0; I < Size; I++)
    EXPECT_EQ((reinterpret_cast<uint8_t *>(P))[I], 0U);
  free(P);

  P = calloc(1U, 0U);
  EXPECT_NE(P, nullptr);
  free(P);
  P = calloc(0U, 1U);
  EXPECT_NE(P, nullptr);
  free(P);

  errno = 0;
  EXPECT_EQ(calloc(SIZE_MAX, 1U), nullptr);
  EXPECT_EQ(errno, ENOMEM);
  errno = 0;
  EXPECT_EQ(calloc(static_cast<size_t>(LONG_MAX) + 1U, 2U), nullptr);
  if (SCUDO_ANDROID)
    EXPECT_EQ(errno, ENOMEM);
  errno = 0;
  EXPECT_EQ(calloc(SIZE_MAX, SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
}

TEST(ScudoWrappersCTest, Memalign) {
  void *P;
  for (size_t I = FIRST_32_SECOND_64(2U, 3U); I <= 18U; I++) {
    const size_t Alignment = 1U << I;

    P = memalign(Alignment, Size);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size, malloc_usable_size(P));
    EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
    free(P);

    P = nullptr;
    EXPECT_EQ(posix_memalign(&P, Alignment, Size), 0);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size, malloc_usable_size(P));
    EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
    free(P);
  }

  EXPECT_EQ(memalign(4096U, SIZE_MAX), nullptr);
  EXPECT_EQ(posix_memalign(&P, 15U, Size), EINVAL);
  EXPECT_EQ(posix_memalign(&P, 4096U, SIZE_MAX), ENOMEM);

  // Android's memalign accepts non power-of-2 alignments, and 0.
  if (SCUDO_ANDROID) {
    for (size_t Alignment = 0U; Alignment <= 128U; Alignment++) {
      P = memalign(Alignment, 1024U);
      EXPECT_NE(P, nullptr);
      free(P);
    }
  }
}

TEST(ScudoWrappersCTest, AlignedAlloc) {
  const size_t Alignment = 4096U;
  void *P = aligned_alloc(Alignment, Alignment * 4U);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Alignment * 4U, malloc_usable_size(P));
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
  free(P);

  errno = 0;
  P = aligned_alloc(Alignment, Size);
  EXPECT_EQ(P, nullptr);
  EXPECT_EQ(errno, EINVAL);
}

TEST(ScudoWrappersCTest, Realloc) {
  // realloc(nullptr, N) is malloc(N)
  void *P = realloc(nullptr, 0U);
  EXPECT_NE(P, nullptr);
  free(P);

  P = malloc(Size);
  EXPECT_NE(P, nullptr);
  // realloc(P, 0U) is free(P) and returns nullptr
  EXPECT_EQ(realloc(P, 0U), nullptr);

  P = malloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size, malloc_usable_size(P));
  memset(P, 0x42, Size);

  P = realloc(P, Size * 2U);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size * 2U, malloc_usable_size(P));
  for (size_t I = 0; I < Size; I++)
    EXPECT_EQ(0x42, (reinterpret_cast<uint8_t *>(P))[I]);

  P = realloc(P, Size / 2U);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size / 2U, malloc_usable_size(P));
  for (size_t I = 0; I < Size / 2U; I++)
    EXPECT_EQ(0x42, (reinterpret_cast<uint8_t *>(P))[I]);
  free(P);

  EXPECT_DEATH(P = realloc(P, Size), "");

  errno = 0;
  EXPECT_EQ(realloc(nullptr, SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
  P = malloc(Size);
  EXPECT_NE(P, nullptr);
  errno = 0;
  EXPECT_EQ(realloc(P, SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
  free(P);

  // Android allows realloc of memalign pointers.
  if (SCUDO_ANDROID) {
    const size_t Alignment = 1024U;
    P = memalign(Alignment, Size);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size, malloc_usable_size(P));
    EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
    memset(P, 0x42, Size);

    P = realloc(P, Size * 2U);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size * 2U, malloc_usable_size(P));
    for (size_t I = 0; I < Size; I++)
      EXPECT_EQ(0x42, (reinterpret_cast<uint8_t *>(P))[I]);
    free(P);
  }
}

#ifndef M_DECAY_TIME
#define M_DECAY_TIME -100
#endif

#ifndef M_PURGE
#define M_PURGE -101
#endif

TEST(ScudoWrappersCTest, MallOpt) {
  errno = 0;
  EXPECT_EQ(mallopt(-1000, 1), 0);
  // mallopt doesn't set errno.
  EXPECT_EQ(errno, 0);

  EXPECT_EQ(mallopt(M_PURGE, 0), 1);

  EXPECT_EQ(mallopt(M_DECAY_TIME, 1), 1);
  EXPECT_EQ(mallopt(M_DECAY_TIME, 0), 1);
  EXPECT_EQ(mallopt(M_DECAY_TIME, 1), 1);
  EXPECT_EQ(mallopt(M_DECAY_TIME, 0), 1);
}

TEST(ScudoWrappersCTest, OtherAlloc) {
  const size_t PageSize = sysconf(_SC_PAGESIZE);

  void *P = pvalloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) & (PageSize - 1), 0U);
  EXPECT_LE(PageSize, malloc_usable_size(P));
  free(P);

  EXPECT_EQ(pvalloc(SIZE_MAX), nullptr);

  P = pvalloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) & (PageSize - 1), 0U);
  free(P);

  EXPECT_EQ(valloc(SIZE_MAX), nullptr);
}

TEST(ScudoWrappersCTest, MallInfo) {
  const size_t BypassQuarantineSize = 1024U;

  struct mallinfo MI = mallinfo();
  size_t Allocated = MI.uordblks;
  void *P = malloc(BypassQuarantineSize);
  EXPECT_NE(P, nullptr);
  MI = mallinfo();
  EXPECT_GE(static_cast<size_t>(MI.uordblks), Allocated + BypassQuarantineSize);
  EXPECT_GT(static_cast<size_t>(MI.hblkhd), 0U);
  size_t Free = MI.fordblks;
  free(P);
  MI = mallinfo();
  EXPECT_GE(static_cast<size_t>(MI.fordblks), Free + BypassQuarantineSize);
}

static uintptr_t BoundaryP;
static size_t Count;

static void callback(uintptr_t Base, size_t Size, void *Arg) {
  if (Base == BoundaryP)
    Count++;
}

// Verify that a block located on an iteration boundary is not mis-accounted.
// To achieve this, we allocate a chunk for which the backing block will be
// aligned on a page, then run the malloc_iterate on both the pages that the
// block is a boundary for. It must only be seen once by the callback function.
TEST(ScudoWrappersCTest, MallocIterateBoundary) {
  const size_t PageSize = sysconf(_SC_PAGESIZE);
  const size_t BlockDelta = FIRST_32_SECOND_64(8U, 16U);
  const size_t SpecialSize = PageSize - BlockDelta;

  void *P = malloc(SpecialSize);
  EXPECT_NE(P, nullptr);
  BoundaryP = reinterpret_cast<uintptr_t>(P);
  const uintptr_t Block = BoundaryP - BlockDelta;
  EXPECT_EQ((Block & (PageSize - 1)), 0U);

  Count = 0U;
  malloc_disable();
  malloc_iterate(Block - PageSize, PageSize, callback, nullptr);
  malloc_iterate(Block, PageSize, callback, nullptr);
  malloc_enable();
  EXPECT_EQ(Count, 1U);

  free(P);
}