summaryrefslogtreecommitdiff
path: root/third_party/boringssl/common/aes-gcm.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/boringssl/common/aes-gcm.c')
-rw-r--r--third_party/boringssl/common/aes-gcm.c883
1 files changed, 0 insertions, 883 deletions
diff --git a/third_party/boringssl/common/aes-gcm.c b/third_party/boringssl/common/aes-gcm.c
deleted file mode 100644
index edb98b88b3..0000000000
--- a/third_party/boringssl/common/aes-gcm.c
+++ /dev/null
@@ -1,883 +0,0 @@
-/* ====================================================================
- * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * 3. All advertising materials mentioning features or use of this
- * software must display the following acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- *
- * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
- * endorse or promote products derived from this software without
- * prior written permission. For written permission, please contact
- * openssl-core@openssl.org.
- *
- * 5. Products derived from this software may not be called "OpenSSL"
- * nor may "OpenSSL" appear in their names without prior written
- * permission of the OpenSSL Project.
- *
- * 6. Redistributions of any form whatsoever must retain the following
- * acknowledgment:
- * "This product includes software developed by the OpenSSL Project
- * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
- *
- * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
- * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
- * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- * ==================================================================== */
-
-#include "aes-gcm.h"
-#include "common.h"
-#include "endian.h"
-#include "util.h"
-
-#define STRICT_ALIGNMENT 1
-
-#define OPENSSL_memcpy memcpy
-#define OPENSSL_memset memset
-#define CRYPTO_memcmp safe_memcmp
-
-#ifdef CORE_CORTEX_M
-#define GHASH_ASM
-#define OPENSSL_ARM
-#define __ARM_ARCH__ 7
-#endif
-
-static inline uint32_t CRYPTO_bswap4(uint32_t x) {
- return __builtin_bswap32(x);
-}
-
-static inline uint64_t CRYPTO_bswap8(uint64_t x) {
- return __builtin_bswap64(x);
-}
-
-static inline size_t load_word_le(const void *in) {
- size_t v;
- OPENSSL_memcpy(&v, in, sizeof(v));
- return v;
-}
-
-static inline void store_word_le(void *out, size_t v) {
- OPENSSL_memcpy(out, &v, sizeof(v));
-}
-
-#define PACK(s) ((size_t)(s) << (sizeof(size_t) * 8 - 16))
-#define REDUCE1BIT(V) \
- do { \
- if (sizeof(size_t) == 8) { \
- uint64_t T = UINT64_C(0xe100000000000000) & (0 - ((V).lo & 1)); \
- (V).lo = ((V).hi << 63) | ((V).lo >> 1); \
- (V).hi = ((V).hi >> 1) ^ T; \
- } else { \
- uint32_t T = 0xe1000000U & (0 - (uint32_t)((V).lo & 1)); \
- (V).lo = ((V).hi << 63) | ((V).lo >> 1); \
- (V).hi = ((V).hi >> 1) ^ ((uint64_t)T << 32); \
- } \
- } while (0)
-
-static void gcm_init_4bit(u128 Htable[16], uint64_t H[2]) {
- u128 V;
-
- Htable[0].hi = 0;
- Htable[0].lo = 0;
- V.hi = H[0];
- V.lo = H[1];
-
- Htable[8] = V;
- REDUCE1BIT(V);
- Htable[4] = V;
- REDUCE1BIT(V);
- Htable[2] = V;
- REDUCE1BIT(V);
- Htable[1] = V;
- Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo;
- V = Htable[4];
- Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo;
- Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo;
- Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo;
- V = Htable[8];
- Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo;
- Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo;
- Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo;
- Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo;
- Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo;
- Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo;
- Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo;
-
-#if defined(GHASH_ASM) && defined(OPENSSL_ARM)
- for (int j = 0; j < 16; ++j) {
- V = Htable[j];
- Htable[j].hi = V.lo;
- Htable[j].lo = V.hi;
- }
-#endif
-}
-
-#if !defined(GHASH_ASM) || defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
-static const size_t rem_4bit[16] = {
- PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
- PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
- PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560),
- PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)};
-
-static void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]) {
- u128 Z;
- int cnt = 15;
- size_t rem, nlo, nhi;
-
- nlo = ((const uint8_t *)Xi)[15];
- nhi = nlo >> 4;
- nlo &= 0xf;
-
- Z.hi = Htable[nlo].hi;
- Z.lo = Htable[nlo].lo;
-
- while (1) {
- rem = (size_t)Z.lo & 0xf;
- Z.lo = (Z.hi << 60) | (Z.lo >> 4);
- Z.hi = (Z.hi >> 4);
- if (sizeof(size_t) == 8) {
- Z.hi ^= rem_4bit[rem];
- } else {
- Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
- }
-
- Z.hi ^= Htable[nhi].hi;
- Z.lo ^= Htable[nhi].lo;
-
- if (--cnt < 0) {
- break;
- }
-
- nlo = ((const uint8_t *)Xi)[cnt];
- nhi = nlo >> 4;
- nlo &= 0xf;
-
- rem = (size_t)Z.lo & 0xf;
- Z.lo = (Z.hi << 60) | (Z.lo >> 4);
- Z.hi = (Z.hi >> 4);
- if (sizeof(size_t) == 8) {
- Z.hi ^= rem_4bit[rem];
- } else {
- Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
- }
-
- Z.hi ^= Htable[nlo].hi;
- Z.lo ^= Htable[nlo].lo;
- }
-
- Xi[0] = CRYPTO_bswap8(Z.hi);
- Xi[1] = CRYPTO_bswap8(Z.lo);
-}
-
-// Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for
-// details... Compiler-generated code doesn't seem to give any
-// performance improvement, at least not on x86[_64]. It's here
-// mostly as reference and a placeholder for possible future
-// non-trivial optimization[s]...
-static void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16],
- const uint8_t *inp, size_t len) {
- u128 Z;
- int cnt;
- size_t rem, nlo, nhi;
-
- do {
- cnt = 15;
- nlo = ((const uint8_t *)Xi)[15];
- nlo ^= inp[15];
- nhi = nlo >> 4;
- nlo &= 0xf;
-
- Z.hi = Htable[nlo].hi;
- Z.lo = Htable[nlo].lo;
-
- while (1) {
- rem = (size_t)Z.lo & 0xf;
- Z.lo = (Z.hi << 60) | (Z.lo >> 4);
- Z.hi = (Z.hi >> 4);
- if (sizeof(size_t) == 8) {
- Z.hi ^= rem_4bit[rem];
- } else {
- Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
- }
-
- Z.hi ^= Htable[nhi].hi;
- Z.lo ^= Htable[nhi].lo;
-
- if (--cnt < 0) {
- break;
- }
-
- nlo = ((const uint8_t *)Xi)[cnt];
- nlo ^= inp[cnt];
- nhi = nlo >> 4;
- nlo &= 0xf;
-
- rem = (size_t)Z.lo & 0xf;
- Z.lo = (Z.hi << 60) | (Z.lo >> 4);
- Z.hi = (Z.hi >> 4);
- if (sizeof(size_t) == 8) {
- Z.hi ^= rem_4bit[rem];
- } else {
- Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
- }
-
- Z.hi ^= Htable[nlo].hi;
- Z.lo ^= Htable[nlo].lo;
- }
-
- Xi[0] = CRYPTO_bswap8(Z.hi);
- Xi[1] = CRYPTO_bswap8(Z.lo);
- } while (inp += 16, len -= 16);
-}
-#else // GHASH_ASM
-void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]);
-void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
- size_t len);
-#endif
-
-#define GCM_MUL(ctx, Xi) gcm_gmult_4bit((ctx)->Xi.u, (ctx)->Htable)
-#if defined(GHASH_ASM)
-#define GHASH(ctx, in, len) gcm_ghash_4bit((ctx)->Xi.u, (ctx)->Htable, in, len)
-// GHASH_CHUNK is "stride parameter" missioned to mitigate cache
-// trashing effect. In other words idea is to hash data while it's
-// still in L1 cache after encryption pass...
-#define GHASH_CHUNK (3 * 1024)
-#endif
-
-
-#if defined(GHASH_ASM)
-
-#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
-#define GCM_FUNCREF_4BIT
-void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]);
-void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]);
-void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
- size_t len);
-
-#if defined(OPENSSL_X86_64)
-#define GHASH_ASM_X86_64
-void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]);
-void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]);
-void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
- size_t len);
-#define AESNI_GCM
-size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
- const void *key, uint8_t ivec[16], uint64_t *Xi);
-size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
- const void *key, uint8_t ivec[16], uint64_t *Xi);
-#endif
-
-#if defined(OPENSSL_X86)
-#define GHASH_ASM_X86
-void gcm_gmult_4bit_mmx(uint64_t Xi[2], const u128 Htable[16]);
-void gcm_ghash_4bit_mmx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
- size_t len);
-#endif
-
-#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
-#if __ARM_ARCH__ >= 7
-#define GHASH_ASM_ARM
-#define GCM_FUNCREF_4BIT
-
-#if defined(OPENSSL_ARM_PMULL)
-static int pmull_capable(void) {
- return CRYPTO_is_ARMv8_PMULL_capable();
-}
-
-void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]);
-void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]);
-void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
- size_t len);
-#else
-static int pmull_capable(void) {
- return 0;
-}
-static void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]) {
-
-}
-static void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]) {
-
-}
-static void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16],
- const uint8_t *inp, size_t len) {
-
-}
-#endif
-
-#if defined(OPENSSL_ARM_NEON)
-// 32-bit ARM also has support for doing GCM with NEON instructions.
-static int neon_capable(void) {
- return CRYPTO_is_NEON_capable();
-}
-
-void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]);
-void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]);
-void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
- size_t len);
-#else
-// AArch64 only has the ARMv8 versions of functions.
-static int neon_capable(void) {
- return 0;
-}
-static void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]) {
-
-}
-static void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]) {
-
-}
-static void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16],
- const uint8_t *inp, size_t len) {
-
-}
-#endif
-
-#endif
-#elif defined(OPENSSL_PPC64LE)
-#define GHASH_ASM_PPC64LE
-#define GCM_FUNCREF_4BIT
-void gcm_init_p8(u128 Htable[16], const uint64_t Xi[2]);
-void gcm_gmult_p8(uint64_t Xi[2], const u128 Htable[16]);
-void gcm_ghash_p8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
- size_t len);
-#endif
-#endif
-
-#ifdef GCM_FUNCREF_4BIT
-#undef GCM_MUL
-#define GCM_MUL(ctx, Xi) (*gcm_gmult_p)((ctx)->Xi.u, (ctx)->Htable)
-#ifdef GHASH
-#undef GHASH
-#define GHASH(ctx, in, len) (*gcm_ghash_p)((ctx)->Xi.u, (ctx)->Htable, in, len)
-#endif
-#endif
-
-#ifdef GHASH
-// kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four
-// bits of a |size_t|.
-static const size_t kSizeTWithoutLower4Bits = (size_t) -16;
-#endif
-
-static void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
- u128 *out_key, u128 out_table[16],
- const uint8_t *gcm_key) {
-
- union {
- uint64_t u[2];
- uint8_t c[16];
- } H;
-
- OPENSSL_memcpy(H.c, gcm_key, 16);
-
- // H is stored in host byte order
- H.u[0] = CRYPTO_bswap8(H.u[0]);
- H.u[1] = CRYPTO_bswap8(H.u[1]);
-
- OPENSSL_memcpy(out_key, H.c, 16);
-
-#if defined(GHASH_ASM_X86_64)
- if (crypto_gcm_clmul_enabled()) {
- if (((OPENSSL_ia32cap_get()[1] >> 22) & 0x41) == 0x41) { // AVX+MOVBE
- gcm_init_avx(out_table, H.u);
- *out_mult = gcm_gmult_avx;
- *out_hash = gcm_ghash_avx;
- *out_is_avx = 1;
- return;
- }
- gcm_init_clmul(out_table, H.u);
- *out_mult = gcm_gmult_clmul;
- *out_hash = gcm_ghash_clmul;
- return;
- }
-#elif defined(GHASH_ASM_X86)
- if (crypto_gcm_clmul_enabled()) {
- gcm_init_clmul(out_table, H.u);
- *out_mult = gcm_gmult_clmul;
- *out_hash = gcm_ghash_clmul;
- return;
- }
-#elif defined(GHASH_ASM_ARM)
- if (pmull_capable()) {
- gcm_init_v8(out_table, H.u);
- *out_mult = gcm_gmult_v8;
- *out_hash = gcm_ghash_v8;
- return;
- }
-
- if (neon_capable()) {
- gcm_init_neon(out_table, H.u);
- *out_mult = gcm_gmult_neon;
- *out_hash = gcm_ghash_neon;
- return;
- }
-#elif defined(GHASH_ASM_PPC64LE)
- if (CRYPTO_is_PPC64LE_vcrypto_capable()) {
- gcm_init_p8(out_table, H.u);
- *out_mult = gcm_gmult_p8;
- *out_hash = gcm_ghash_p8;
- return;
- }
-#endif
-
- gcm_init_4bit(out_table, H.u);
-#if defined(GHASH_ASM_X86)
- *out_mult = gcm_gmult_4bit_mmx;
- *out_hash = gcm_ghash_4bit_mmx;
-#else
- *out_mult = gcm_gmult_4bit;
- *out_hash = gcm_ghash_4bit;
-#endif
-}
-
-void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, const void *aes_key,
- block128_f block, int block_is_hwaes) {
- OPENSSL_memset(ctx, 0, sizeof(*ctx));
- ctx->block = block;
-
- uint8_t gcm_key[16];
- OPENSSL_memset(gcm_key, 0, sizeof(gcm_key));
- (*block)(gcm_key, gcm_key, aes_key);
-
- CRYPTO_ghash_init(&ctx->gmult, &ctx->ghash, &ctx->H, ctx->Htable,
- gcm_key);
-}
-
-void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const void *key,
- const uint8_t *iv, size_t len) {
- unsigned int ctr;
-#ifdef GCM_FUNCREF_4BIT
- void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
-#endif
-
- ctx->Yi.u[0] = 0;
- ctx->Yi.u[1] = 0;
- ctx->Xi.u[0] = 0;
- ctx->Xi.u[1] = 0;
- ctx->len.u[0] = 0; // AAD length
- ctx->len.u[1] = 0; // message length
- ctx->ares = 0;
- ctx->mres = 0;
-
- if (len == 12) {
- OPENSSL_memcpy(ctx->Yi.c, iv, 12);
- ctx->Yi.c[15] = 1;
- ctr = 1;
- } else {
- uint64_t len0 = len;
-
- while (len >= 16) {
- for (size_t i = 0; i < 16; ++i) {
- ctx->Yi.c[i] ^= iv[i];
- }
- GCM_MUL(ctx, Yi);
- iv += 16;
- len -= 16;
- }
- if (len) {
- for (size_t i = 0; i < len; ++i) {
- ctx->Yi.c[i] ^= iv[i];
- }
- GCM_MUL(ctx, Yi);
- }
- len0 <<= 3;
- ctx->Yi.u[1] ^= CRYPTO_bswap8(len0);
-
- GCM_MUL(ctx, Yi);
- ctr = CRYPTO_bswap4(ctx->Yi.d[3]);
- }
-
- (*ctx->block)(ctx->Yi.c, ctx->EK0.c, key);
- ++ctr;
- ctx->Yi.d[3] = CRYPTO_bswap4(ctr);
-}
-
-int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len) {
- unsigned int n;
- uint64_t alen = ctx->len.u[0];
-#ifdef GCM_FUNCREF_4BIT
- void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
-#ifdef GHASH
- void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
- size_t len) = ctx->ghash;
-#endif
-#endif
-
- if (ctx->len.u[1]) {
- return 0;
- }
-
- alen += len;
- if (alen > (UINT64_C(1) << 61) || (sizeof(len) == 8 && alen < len)) {
- return 0;
- }
- ctx->len.u[0] = alen;
-
- n = ctx->ares;
- if (n) {
- while (n && len) {
- ctx->Xi.c[n] ^= *(aad++);
- --len;
- n = (n + 1) % 16;
- }
- if (n == 0) {
- GCM_MUL(ctx, Xi);
- } else {
- ctx->ares = n;
- return 1;
- }
- }
-
- // Process a whole number of blocks.
-#ifdef GHASH
- size_t len_blocks = len & kSizeTWithoutLower4Bits;
- if (len_blocks != 0) {
- GHASH(ctx, aad, len_blocks);
- aad += len_blocks;
- len -= len_blocks;
- }
-#else
- while (len >= 16) {
- for (size_t i = 0; i < 16; ++i) {
- ctx->Xi.c[i] ^= aad[i];
- }
- GCM_MUL(ctx, Xi);
- aad += 16;
- len -= 16;
- }
-#endif
-
- // Process the remainder.
- if (len != 0) {
- n = (unsigned int)len;
- for (size_t i = 0; i < len; ++i) {
- ctx->Xi.c[i] ^= aad[i];
- }
- }
-
- ctx->ares = n;
- return 1;
-}
-
-int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const void *key,
- const uint8_t *in, uint8_t *out, size_t len) {
- unsigned int n, ctr;
- uint64_t mlen = ctx->len.u[1];
- block128_f block = ctx->block;
-#ifdef GCM_FUNCREF_4BIT
- void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
-#ifdef GHASH
- void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
- size_t len) = ctx->ghash;
-#endif
-#endif
-
- mlen += len;
- if (mlen > ((UINT64_C(1) << 36) - 32) ||
- (sizeof(len) == 8 && mlen < len)) {
- return 0;
- }
- ctx->len.u[1] = mlen;
-
- if (ctx->ares) {
- // First call to encrypt finalizes GHASH(AAD)
- GCM_MUL(ctx, Xi);
- ctx->ares = 0;
- }
-
- ctr = CRYPTO_bswap4(ctx->Yi.d[3]);
-
- n = ctx->mres;
- if (n) {
- while (n && len) {
- ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
- --len;
- n = (n + 1) % 16;
- }
- if (n == 0) {
- GCM_MUL(ctx, Xi);
- } else {
- ctx->mres = n;
- return 1;
- }
- }
- if (STRICT_ALIGNMENT &&
- ((uintptr_t)in | (uintptr_t)out) % sizeof(size_t) != 0) {
- for (size_t i = 0; i < len; ++i) {
- if (n == 0) {
- (*block)(ctx->Yi.c, ctx->EKi.c, key);
- ++ctr;
- ctx->Yi.d[3] = CRYPTO_bswap4(ctr);
- }
- ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n];
- n = (n + 1) % 16;
- if (n == 0) {
- GCM_MUL(ctx, Xi);
- }
- }
-
- ctx->mres = n;
- return 1;
- }
-#if defined(GHASH) && defined(GHASH_CHUNK)
- while (len >= GHASH_CHUNK) {
- size_t j = GHASH_CHUNK;
-
- while (j) {
- (*block)(ctx->Yi.c, ctx->EKi.c, key);
- ++ctr;
- ctx->Yi.d[3] = CRYPTO_bswap4(ctr);
- for (size_t i = 0; i < 16; i += sizeof(size_t)) {
- store_word_le(out + i,
- load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]);
- }
- out += 16;
- in += 16;
- j -= 16;
- }
- GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK);
- len -= GHASH_CHUNK;
- }
- size_t len_blocks = len & kSizeTWithoutLower4Bits;
- if (len_blocks != 0) {
- while (len >= 16) {
- (*block)(ctx->Yi.c, ctx->EKi.c, key);
- ++ctr;
- ctx->Yi.d[3] = CRYPTO_bswap4(ctr);
- for (size_t i = 0; i < 16; i += sizeof(size_t)) {
- store_word_le(out + i,
- load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]);
- }
- out += 16;
- in += 16;
- len -= 16;
- }
- GHASH(ctx, out - len_blocks, len_blocks);
- }
-#else
- while (len >= 16) {
- (*block)(ctx->Yi.c, ctx->EKi.c, key);
- ++ctr;
- ctx->Yi.d[3] = CRYPTO_bswap4(ctr);
- for (size_t i = 0; i < 16; i += sizeof(size_t)) {
- size_t tmp = load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)];
- store_word_le(out + i, tmp);
- ctx->Xi.t[i / sizeof(size_t)] ^= tmp;
- }
- GCM_MUL(ctx, Xi);
- out += 16;
- in += 16;
- len -= 16;
- }
-#endif
- if (len) {
- (*block)(ctx->Yi.c, ctx->EKi.c, key);
- ++ctr;
- ctx->Yi.d[3] = CRYPTO_bswap4(ctr);
- while (len--) {
- ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
- ++n;
- }
- }
-
- ctx->mres = n;
- return 1;
-}
-
-int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const void *key,
- const unsigned char *in, unsigned char *out,
- size_t len) {
- unsigned int n, ctr;
- uint64_t mlen = ctx->len.u[1];
- block128_f block = ctx->block;
-#ifdef GCM_FUNCREF_4BIT
- void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
-#ifdef GHASH
- void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
- size_t len) = ctx->ghash;
-#endif
-#endif
-
- mlen += len;
- if (mlen > ((UINT64_C(1) << 36) - 32) ||
- (sizeof(len) == 8 && mlen < len)) {
- return 0;
- }
- ctx->len.u[1] = mlen;
-
- if (ctx->ares) {
- // First call to decrypt finalizes GHASH(AAD)
- GCM_MUL(ctx, Xi);
- ctx->ares = 0;
- }
-
- ctr = CRYPTO_bswap4(ctx->Yi.d[3]);
-
- n = ctx->mres;
- if (n) {
- while (n && len) {
- uint8_t c = *(in++);
- *(out++) = c ^ ctx->EKi.c[n];
- ctx->Xi.c[n] ^= c;
- --len;
- n = (n + 1) % 16;
- }
- if (n == 0) {
- GCM_MUL(ctx, Xi);
- } else {
- ctx->mres = n;
- return 1;
- }
- }
- if (STRICT_ALIGNMENT &&
- ((uintptr_t)in | (uintptr_t)out) % sizeof(size_t) != 0) {
- for (size_t i = 0; i < len; ++i) {
- uint8_t c;
- if (n == 0) {
- (*block)(ctx->Yi.c, ctx->EKi.c, key);
- ++ctr;
- ctx->Yi.d[3] = CRYPTO_bswap4(ctr);
- }
- c = in[i];
- out[i] = c ^ ctx->EKi.c[n];
- ctx->Xi.c[n] ^= c;
- n = (n + 1) % 16;
- if (n == 0) {
- GCM_MUL(ctx, Xi);
- }
- }
-
- ctx->mres = n;
- return 1;
- }
-#if defined(GHASH) && defined(GHASH_CHUNK)
- while (len >= GHASH_CHUNK) {
- size_t j = GHASH_CHUNK;
-
- GHASH(ctx, in, GHASH_CHUNK);
- while (j) {
- (*block)(ctx->Yi.c, ctx->EKi.c, key);
- ++ctr;
- ctx->Yi.d[3] = CRYPTO_bswap4(ctr);
- for (size_t i = 0; i < 16; i += sizeof(size_t)) {
- store_word_le(out + i,
- load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]);
- }
- out += 16;
- in += 16;
- j -= 16;
- }
- len -= GHASH_CHUNK;
- }
- size_t len_blocks = len & kSizeTWithoutLower4Bits;
- if (len_blocks != 0) {
- GHASH(ctx, in, len_blocks);
- while (len >= 16) {
- (*block)(ctx->Yi.c, ctx->EKi.c, key);
- ++ctr;
- ctx->Yi.d[3] = CRYPTO_bswap4(ctr);
- for (size_t i = 0; i < 16; i += sizeof(size_t)) {
- store_word_le(out + i,
- load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]);
- }
- out += 16;
- in += 16;
- len -= 16;
- }
- }
-#else
- while (len >= 16) {
- (*block)(ctx->Yi.c, ctx->EKi.c, key);
- ++ctr;
- ctx->Yi.d[3] = CRYPTO_bswap4(ctr);
- for (size_t i = 0; i < 16; i += sizeof(size_t)) {
- size_t c = load_word_le(in + i);
- store_word_le(out + i, c ^ ctx->EKi.t[i / sizeof(size_t)]);
- ctx->Xi.t[i / sizeof(size_t)] ^= c;
- }
- GCM_MUL(ctx, Xi);
- out += 16;
- in += 16;
- len -= 16;
- }
-#endif
- if (len) {
- (*block)(ctx->Yi.c, ctx->EKi.c, key);
- ++ctr;
- ctx->Yi.d[3] = CRYPTO_bswap4(ctr);
- while (len--) {
- uint8_t c = in[n];
- ctx->Xi.c[n] ^= c;
- out[n] = c ^ ctx->EKi.c[n];
- ++n;
- }
- }
-
- ctx->mres = n;
- return 1;
-}
-
-int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len) {
- uint64_t alen = ctx->len.u[0] << 3;
- uint64_t clen = ctx->len.u[1] << 3;
-#ifdef GCM_FUNCREF_4BIT
- void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
-#endif
-
- if (ctx->mres || ctx->ares) {
- GCM_MUL(ctx, Xi);
- }
-
- alen = CRYPTO_bswap8(alen);
- clen = CRYPTO_bswap8(clen);
-
- ctx->Xi.u[0] ^= alen;
- ctx->Xi.u[1] ^= clen;
- GCM_MUL(ctx, Xi);
-
- ctx->Xi.u[0] ^= ctx->EK0.u[0];
- ctx->Xi.u[1] ^= ctx->EK0.u[1];
-
- if (tag && len <= sizeof(ctx->Xi)) {
- return CRYPTO_memcmp(ctx->Xi.c, tag, len) == 0;
- } else {
- return 0;
- }
-}
-
-void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) {
- CRYPTO_gcm128_finish(ctx, NULL, 0);
- OPENSSL_memcpy(tag, ctx->Xi.c,
- len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c));
-}
-
-#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
-int crypto_gcm_clmul_enabled(void) {
-#ifdef GHASH_ASM
- const uint32_t *ia32cap = OPENSSL_ia32cap_get();
- return (ia32cap[0] & (1 << 24)) && // check FXSR bit
- (ia32cap[1] & (1 << 1)); // check PCLMULQDQ bit
-#else
- return 0;
-#endif
-}
-#endif