1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
/* Copyright 2021 The ChromiumOS Authors
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Power LED control for Brask.
* Solid green - active power
* Green flashing - suspended
* Red flashing - alert
* Solid red - critical
*/
#include "chipset.h"
#include "console.h"
#include "ec_commands.h"
#include "gpio.h"
#include "hooks.h"
#include "led_common.h"
#include "pwm.h"
#include "timer.h"
#include "util.h"
#define CPRINTS(format, args...) cprints(CC_GPIO, format, ##args)
/*
* Due to the CSME-Lite processing, upon startup the CPU transitions through
* S0->S3->S5->S3->S0, causing the LED to turn on/off/on, so
* delay turning off the LED during suspend/shutdown.
*/
#define LED_CPU_DELAY_MS (2000 * MSEC)
const enum ec_led_id supported_led_ids[] = { EC_LED_ID_POWER_LED };
const int supported_led_ids_count = ARRAY_SIZE(supported_led_ids);
enum led_color {
LED_OFF = 0,
LED_RED,
LED_GREEN,
/* Number of colors, not a color itself */
LED_COLOR_COUNT
};
static int set_color_power(enum led_color color, int duty)
{
int green = 0;
int red = 0;
if (duty < 0 || 100 < duty)
return EC_ERROR_UNKNOWN;
switch (color) {
case LED_OFF:
break;
case LED_GREEN:
green = 1;
break;
case LED_RED:
red = 1;
break;
default:
return EC_ERROR_UNKNOWN;
}
if (red)
pwm_set_duty(PWM_CH_LED_RED, duty);
else
pwm_set_duty(PWM_CH_LED_RED, 0);
if (green)
pwm_set_duty(PWM_CH_LED_GREEN, duty);
else
pwm_set_duty(PWM_CH_LED_GREEN, 0);
return EC_SUCCESS;
}
static int set_color(enum ec_led_id id, enum led_color color, int duty)
{
switch (id) {
case EC_LED_ID_POWER_LED:
return set_color_power(color, duty);
default:
return EC_ERROR_UNKNOWN;
}
}
#define LED_PULSE_US (2 * SECOND)
/* 40 msec for nice and smooth transition. */
#define LED_PULSE_TICK_US (40 * MSEC)
/*
* When pulsing is enabled, brightness is incremented by <duty_inc> every
* <interval> usec from 0 to 100% in LED_PULSE_US usec. Then it's decremented
* likewise in LED_PULSE_US usec.
*/
static struct {
uint32_t interval;
int duty_inc;
enum led_color color;
int duty;
} led_pulse;
#define CONFIG_TICK(interval, color) \
config_tick((interval), 100 / (LED_PULSE_US / (interval)), (color))
static void config_tick(uint32_t interval, int duty_inc, enum led_color color)
{
led_pulse.interval = interval;
led_pulse.duty_inc = duty_inc;
led_pulse.color = color;
led_pulse.duty = 0;
}
static void pulse_power_led(enum led_color color)
{
set_color(EC_LED_ID_POWER_LED, color, led_pulse.duty);
if (led_pulse.duty + led_pulse.duty_inc > 100)
led_pulse.duty_inc = led_pulse.duty_inc * -1;
else if (led_pulse.duty + led_pulse.duty_inc < 0)
led_pulse.duty_inc = led_pulse.duty_inc * -1;
led_pulse.duty += led_pulse.duty_inc;
}
static void led_tick(void);
DECLARE_DEFERRED(led_tick);
static void led_tick(void)
{
uint32_t elapsed;
uint32_t next = 0;
uint32_t start = get_time().le.lo;
if (led_auto_control_is_enabled(EC_LED_ID_POWER_LED))
pulse_power_led(led_pulse.color);
elapsed = get_time().le.lo - start;
next = led_pulse.interval > elapsed ? led_pulse.interval - elapsed : 0;
hook_call_deferred(&led_tick_data, next);
}
static void led_suspend(void)
{
CONFIG_TICK(LED_PULSE_TICK_US, LED_GREEN);
led_tick();
}
DECLARE_DEFERRED(led_suspend);
static void led_shutdown(void)
{
if (led_auto_control_is_enabled(EC_LED_ID_POWER_LED))
set_color(EC_LED_ID_POWER_LED, LED_OFF, 0);
}
DECLARE_DEFERRED(led_shutdown);
static void led_shutdown_hook(void)
{
hook_call_deferred(&led_tick_data, -1);
hook_call_deferred(&led_suspend_data, -1);
hook_call_deferred(&led_shutdown_data, LED_CPU_DELAY_MS);
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, led_shutdown_hook, HOOK_PRIO_DEFAULT);
static void led_suspend_hook(void)
{
hook_call_deferred(&led_shutdown_data, -1);
hook_call_deferred(&led_suspend_data, LED_CPU_DELAY_MS);
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, led_suspend_hook, HOOK_PRIO_DEFAULT);
static void led_resume(void)
{
/*
* Assume there is no race condition with led_tick, which also
* runs in hook_task.
*/
hook_call_deferred(&led_tick_data, -1);
/*
* Avoid invoking the suspend/shutdown delayed hooks.
*/
hook_call_deferred(&led_suspend_data, -1);
hook_call_deferred(&led_shutdown_data, -1);
if (led_auto_control_is_enabled(EC_LED_ID_POWER_LED))
set_color(EC_LED_ID_POWER_LED, LED_GREEN, 100);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, led_resume, HOOK_PRIO_DEFAULT);
void led_alert(int enable)
{
if (enable) {
/* Overwrite the current signal */
config_tick(1 * SECOND, 100, LED_RED);
led_tick();
} else {
/* Restore the previous signal */
if (chipset_in_state(CHIPSET_STATE_ON))
led_resume();
else if (chipset_in_state(CHIPSET_STATE_SUSPEND))
led_suspend_hook();
else if (chipset_in_state(CHIPSET_STATE_ANY_OFF))
led_shutdown_hook();
}
}
void show_critical_error(void)
{
hook_call_deferred(&led_tick_data, -1);
if (led_auto_control_is_enabled(EC_LED_ID_POWER_LED))
set_color(EC_LED_ID_POWER_LED, LED_RED, 100);
}
static int command_led(int argc, const char **argv)
{
enum ec_led_id id = EC_LED_ID_POWER_LED;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
if (!strcasecmp(argv[1], "debug")) {
led_auto_control(id, !led_auto_control_is_enabled(id));
ccprintf("o%s\n", led_auto_control_is_enabled(id) ? "ff" : "n");
} else if (!strcasecmp(argv[1], "off")) {
set_color(id, LED_OFF, 0);
} else if (!strcasecmp(argv[1], "red")) {
set_color(id, LED_RED, 100);
} else if (!strcasecmp(argv[1], "green")) {
set_color(id, LED_GREEN, 100);
} else if (!strcasecmp(argv[1], "alert")) {
led_alert(1);
} else if (!strcasecmp(argv[1], "crit")) {
show_critical_error();
} else {
return EC_ERROR_PARAM1;
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(led, command_led, "[debug|red|green|off|alert|crit]",
"Turn on/off LED.");
void led_get_brightness_range(enum ec_led_id led_id, uint8_t *brightness_range)
{
brightness_range[EC_LED_COLOR_RED] = 100;
brightness_range[EC_LED_COLOR_GREEN] = 100;
}
int led_set_brightness(enum ec_led_id id, const uint8_t *brightness)
{
if (brightness[EC_LED_COLOR_RED])
return set_color(id, LED_RED, brightness[EC_LED_COLOR_RED]);
else if (brightness[EC_LED_COLOR_GREEN])
return set_color(id, LED_GREEN, brightness[EC_LED_COLOR_GREEN]);
else
return set_color(id, LED_OFF, 0);
}
__override void board_set_charge_limit(int port, int supplier, int charge_ma,
int max_ma, int charge_mv)
{
/* Blink alert if insufficient power per system_can_boot_ap(). */
int insufficient_power =
(charge_ma * charge_mv) <
(CONFIG_CHARGER_MIN_POWER_MW_FOR_POWER_ON * 1000);
led_alert(insufficient_power);
}
|