1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
|
/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "dcrypto.h"
#include "internal.h"
#include "trng.h"
#include "util.h"
#include <assert.h>
/* Extend the MSB throughout the word. */
static uint32_t msb_extend(uint32_t a)
{
return 0u - (a >> 31);
}
/* Return 0xFF..FF if a is zero, and zero otherwise. */
static uint32_t is_zero(uint32_t a)
{
return msb_extend(~a & (a - 1));
}
/* Select a or b based on mask. Mask expected to be 0xFF..FF or 0. */
static uint32_t select(uint32_t mask, uint32_t a, uint32_t b)
{
return (mask & a) | (~mask & b);
}
/* We use SHA256 context to store SHA1 context, so make sure it's ok. */
BUILD_ASSERT(sizeof(struct sha256_ctx) >= sizeof(struct sha1_ctx));
static void MGF1_xor(uint8_t *dst, uint32_t dst_len,
const uint8_t *seed, uint32_t seed_len,
enum hashing_mode hashing)
{
union hash_ctx ctx;
struct {
uint8_t b3;
uint8_t b2;
uint8_t b1;
uint8_t b0;
} cnt;
const uint8_t *digest;
const size_t hash_size = (hashing == HASH_SHA1) ? SHA1_DIGEST_SIZE :
SHA256_DIGEST_SIZE;
cnt.b0 = cnt.b1 = cnt.b2 = cnt.b3 = 0;
while (dst_len) {
int i;
if (hashing == HASH_SHA1)
SHA1_hw_init(&ctx.sha1);
else
SHA256_hw_init(&ctx.sha256);
HASH_update(&ctx, seed, seed_len);
HASH_update(&ctx, (uint8_t *)&cnt, sizeof(cnt));
digest = HASH_final(&ctx)->b8;
for (i = 0; i < dst_len && i < hash_size; ++i)
*dst++ ^= *digest++;
dst_len -= i;
if (!++cnt.b0)
++cnt.b1;
}
}
/*
* struct OAEP { // MSB to LSB.
* uint8_t zero;
* uint8_t seed[HASH_SIZE];
* uint8_t phash[HASH_SIZE];
* uint8_t PS[]; // Variable length (optional) zero-pad.
* uint8_t one; // 0x01, message demarcator.
* uint8_t msg[]; // Input message.
* };
*/
/* encrypt */
static int oaep_pad(uint8_t *output, uint32_t output_len,
const uint8_t *msg, uint32_t msg_len,
enum hashing_mode hashing, const char *label)
{
int i;
const size_t hash_size = (hashing == HASH_SHA1) ? SHA_DIGEST_SIZE
: SHA256_DIGEST_SIZE;
uint8_t *const seed = output + 1;
uint8_t *const phash = seed + hash_size;
uint8_t *const PS = phash + hash_size;
const uint32_t max_msg_len = output_len - 2 - 2 * hash_size;
const uint32_t ps_len = max_msg_len - msg_len;
uint8_t *const one = PS + ps_len;
union hash_ctx ctx;
if (output_len < 2 + 2 * hash_size)
return 0; /* Key size too small for chosen hash. */
if (msg_len > output_len - 2 - 2 * hash_size)
return 0; /* Input message too large for key size. */
always_memset(output, 0, output_len);
for (i = 0; i < hash_size;) {
uint32_t r = rand();
seed[i++] = r >> 0;
seed[i++] = r >> 8;
seed[i++] = r >> 16;
seed[i++] = r >> 24;
}
if (hashing == HASH_SHA1)
SHA1_hw_init(&ctx.sha1);
else
SHA256_hw_init(&ctx.sha256);
HASH_update(&ctx, label, label ? strlen(label) + 1 : 0);
memcpy(phash, HASH_final(&ctx)->b8, hash_size);
*one = 1;
memcpy(one + 1, msg, msg_len);
MGF1_xor(phash, hash_size + 1 + max_msg_len,
seed, hash_size, hashing);
MGF1_xor(seed, hash_size, phash, hash_size + 1 + max_msg_len,
hashing);
return 1;
}
/* decrypt */
static int check_oaep_pad(uint8_t *out, uint32_t *out_len,
uint8_t *padded, uint32_t padded_len,
enum hashing_mode hashing, const char *label)
{
const size_t hash_size = (hashing == HASH_SHA1) ? SHA_DIGEST_SIZE
: SHA256_DIGEST_SIZE;
uint8_t *seed = padded + 1;
uint8_t *phash = seed + hash_size;
uint8_t *PS = phash + hash_size;
const uint32_t max_msg_len = padded_len - 2 - 2 * hash_size;
union hash_ctx ctx;
size_t one_index = 0;
uint32_t looking_for_one_byte = ~0;
int bad;
int i;
if (padded_len < 2 + 2 * hash_size)
return 0; /* Invalid input size. */
/* Recover seed. */
MGF1_xor(seed, hash_size, phash, hash_size + 1 + max_msg_len, hashing);
/* Recover db. */
MGF1_xor(phash, hash_size + 1 + max_msg_len, seed, hash_size, hashing);
if (hashing == HASH_SHA1)
SHA1_hw_init(&ctx.sha1);
else
SHA256_hw_init(&ctx.sha256);
HASH_update(&ctx, label, label ? strlen(label) + 1 : 0);
/* bad should be zero if CRYPTO_OK is returned. */
bad = DCRYPTO_equals(phash, HASH_final(&ctx)->b8, hash_size) -
DCRYPTO_OK;
bad |= padded[0];
for (i = PS - padded; i < padded_len; i++) {
uint32_t equals0 = is_zero(padded[i]);
uint32_t equals1 = is_zero(padded[i] ^ 1);
one_index = select(looking_for_one_byte & equals1,
i, one_index);
looking_for_one_byte = select(equals1, 0, looking_for_one_byte);
/* Bad padding if padded[i] is neither 1 nor 0. */
bad |= looking_for_one_byte & ~equals0;
}
bad |= looking_for_one_byte;
if (bad)
return 0;
one_index++;
if (*out_len < padded_len - one_index)
return 0;
memcpy(out, padded + one_index, padded_len - one_index);
*out_len = padded_len - one_index;
return 1;
}
/* Constants from RFC 3447. */
#define RSA_PKCS1_PADDING_SIZE 11
/* encrypt */
static int pkcs1_type2_pad(uint8_t *padded, uint32_t padded_len,
const uint8_t *in, uint32_t in_len)
{
uint32_t PS_len;
if (padded_len < RSA_PKCS1_PADDING_SIZE)
return 0;
if (in_len > padded_len - RSA_PKCS1_PADDING_SIZE)
return 0;
PS_len = padded_len - 3 - in_len;
*(padded++) = 0;
*(padded++) = 2;
while (PS_len) {
int i;
uint32_t r = rand();
for (i = 0; i < 4 && PS_len; i++) {
uint8_t b = ((uint8_t *) &r)[i];
if (b) {
*padded++ = b;
PS_len--;
}
}
}
*(padded++) = 0;
memcpy(padded, in, in_len);
return 1;
}
/* decrypt */
static int check_pkcs1_type2_pad(uint8_t *out, uint32_t *out_len,
const uint8_t *padded, uint32_t padded_len)
{
int i;
int valid;
uint32_t zero_index = 0;
uint32_t looking_for_index = ~0;
if (padded_len < RSA_PKCS1_PADDING_SIZE)
return 0;
valid = (padded[0] == 0);
valid &= (padded[1] == 2);
for (i = 2; i < padded_len; i++) {
uint32_t found = is_zero(padded[i]);
zero_index = select(looking_for_index & found, i, zero_index);
looking_for_index = select(found, 0, looking_for_index);
}
zero_index++;
valid &= ~looking_for_index;
valid &= (zero_index >= RSA_PKCS1_PADDING_SIZE);
if (!valid)
return 0;
if (*out_len < padded_len - zero_index)
return 0;
memcpy(out, &padded[zero_index], padded_len - zero_index);
*out_len = padded_len - zero_index;
return 1;
}
static const uint8_t SHA1_DER[] = {
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e,
0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14
};
static const uint8_t SHA256_DER[] = {
0x30, 0x31, 0x30, 0x0D, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04, 0x20
};
static const uint8_t SHA384_DER[] = {
0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
0x00, 0x04, 0x30
};
static const uint8_t SHA512_DER[] = {
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
0x00, 0x04, 0x40
};
static int pkcs1_get_der(enum hashing_mode hashing, const uint8_t **der,
uint32_t *der_size, uint32_t *hash_size)
{
switch (hashing) {
case HASH_SHA1:
*der = &SHA1_DER[0];
*der_size = sizeof(SHA1_DER);
*hash_size = SHA1_DIGEST_SIZE;
break;
case HASH_SHA256:
*der = &SHA256_DER[0];
*der_size = sizeof(SHA256_DER);
*hash_size = SHA256_DIGEST_SIZE;
break;
case HASH_SHA384:
*der = &SHA384_DER[0];
*der_size = sizeof(SHA384_DER);
*hash_size = SHA384_DIGEST_SIZE;
break;
case HASH_SHA512:
*der = &SHA512_DER[0];
*der_size = sizeof(SHA512_DER);
*hash_size = SHA512_DIGEST_SIZE;
break;
case HASH_NULL:
*der = NULL;
*der_size = 0;
*hash_size = 0; /* any size allowed */
break;
default:
return 0;
}
return 1;
}
/* sign */
static int pkcs1_type1_pad(uint8_t *padded, uint32_t padded_len,
const uint8_t *in, uint32_t in_len,
enum hashing_mode hashing)
{
const uint8_t *der;
uint32_t der_size;
uint32_t hash_size;
uint32_t ps_len;
if (!pkcs1_get_der(hashing, &der, &der_size, &hash_size))
return 0;
if (padded_len < RSA_PKCS1_PADDING_SIZE + der_size)
return 0;
if (!in_len || (hash_size && in_len != hash_size))
return 0;
if (in_len > padded_len - RSA_PKCS1_PADDING_SIZE - der_size)
return 0;
ps_len = padded_len - 3 - der_size - in_len;
*(padded++) = 0;
*(padded++) = 1;
always_memset(padded, 0xFF, ps_len);
padded += ps_len;
*(padded++) = 0;
memcpy(padded, der, der_size);
padded += der_size;
memcpy(padded, in, in_len);
return 1;
}
/* verify */
static int check_pkcs1_type1_pad(const uint8_t *msg, uint32_t msg_len,
const uint8_t *padded, uint32_t padded_len,
enum hashing_mode hashing)
{
int i;
const uint8_t *der;
uint32_t der_size;
uint32_t hash_size;
uint32_t ps_len;
if (!pkcs1_get_der(hashing, &der, &der_size, &hash_size))
return 0;
if (msg_len != hash_size)
return 0;
if (padded_len < RSA_PKCS1_PADDING_SIZE + der_size + hash_size)
return 0;
ps_len = padded_len - 3 - der_size - hash_size;
if (padded[0] != 0 || padded[1] != 1)
return 0;
for (i = 2; i < ps_len + 2; i++) {
if (padded[i] != 0xFF)
return 0;
}
if (padded[i++] != 0)
return 0;
if (DCRYPTO_equals(&padded[i], der, der_size) != DCRYPTO_OK)
return 0;
i += der_size;
return DCRYPTO_equals(msg, &padded[i], hash_size) == DCRYPTO_OK;
}
/* sign */
static int pkcs1_pss_pad(uint8_t *padded, uint32_t padded_len,
const uint8_t *in, uint32_t in_len,
enum hashing_mode hashing)
{
const uint32_t hash_size = (hashing == HASH_SHA1) ? SHA1_DIGEST_SIZE
: SHA256_DIGEST_SIZE;
const uint32_t salt_len = MIN(padded_len - hash_size - 2, hash_size);
uint32_t db_len;
uint32_t ps_len;
union hash_ctx ctx;
if (in_len != hash_size)
return 0;
if (padded_len < hash_size + 2)
return 0;
db_len = padded_len - hash_size - 1;
if (hashing == HASH_SHA1)
SHA1_hw_init(&ctx.sha1);
else
SHA256_hw_init(&ctx.sha256);
/* Pilfer bits of output for temporary use. */
memset(padded, 0, 8);
HASH_update(&ctx, padded, 8);
HASH_update(&ctx, in, in_len);
/* Pilfer bits of output for temporary use. */
rand_bytes(padded, salt_len);
HASH_update(&ctx, padded, salt_len);
/* Output hash. */
memcpy(padded + db_len, HASH_final(&ctx)->b8, hash_size);
/* Prepare DB. */
ps_len = db_len - salt_len - 1;
memmove(padded + ps_len + 1, padded, salt_len);
memset(padded, 0, ps_len);
padded[ps_len] = 0x01;
MGF1_xor(padded, db_len, padded + db_len, hash_size, hashing);
/* Clear most significant bit. */
padded[0] &= 0x7F;
/* Set trailing byte. */
padded[padded_len - 1] = 0xBC;
return 1;
}
/* verify */
static int check_pkcs1_pss_pad(const uint8_t *in, uint32_t in_len,
uint8_t *padded, uint32_t padded_len,
enum hashing_mode hashing)
{
const uint32_t hash_size = (hashing == HASH_SHA1) ? SHA1_DIGEST_SIZE
: SHA256_DIGEST_SIZE;
const uint8_t zeros[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uint32_t db_len;
uint32_t max_ps_len;
uint32_t salt_len;
union hash_ctx ctx;
int bad = 0;
int i;
if (in_len != hash_size)
return 0;
if (padded_len < hash_size + 2)
return 0;
db_len = padded_len - hash_size - 1;
/* Top bit should be zero. */
bad |= padded[0] & 0x80;
/* Check trailing byte. */
bad |= padded[padded_len - 1] ^ 0xBC;
/* Recover DB. */
MGF1_xor(padded, db_len, padded + db_len, hash_size, hashing);
/* Clear top bit. */
padded[0] &= 0x7F;
/* Verify padding2. */
max_ps_len = db_len - 1;
for (i = 0; i < max_ps_len; i++) {
if (padded[i] == 0x01)
break;
else
bad |= padded[i];
}
bad |= (padded[i] ^ 0x01);
/* Continue with zero-length salt if 0x01 was not found. */
salt_len = max_ps_len - i;
if (hashing == HASH_SHA1)
SHA1_hw_init(&ctx.sha1);
else
SHA256_hw_init(&ctx.sha256);
HASH_update(&ctx, zeros, sizeof(zeros));
HASH_update(&ctx, in, in_len);
HASH_update(&ctx, padded + db_len - salt_len, salt_len);
bad |= DCRYPTO_equals(padded + db_len, HASH_final(&ctx), hash_size) -
DCRYPTO_OK;
return !bad;
}
static int check_modulus_params(
const struct LITE_BIGNUM *N, size_t rsa_max_bytes, uint32_t *out_len)
{
if (bn_size(N) > rsa_max_bytes)
return 0; /* Unsupported key size. */
if (!bn_check_topbit(N)) /* Check that top bit is set. */
return 0;
if (out_len && *out_len < bn_size(N))
return 0; /* Output buffer too small. */
return 1;
}
int DCRYPTO_rsa_encrypt(struct RSA *rsa, uint8_t *out, uint32_t *out_len,
const uint8_t *in, uint32_t in_len,
enum padding_mode padding, enum hashing_mode hashing,
const char *label)
{
uint8_t *p;
uint32_t padded_buf[RSA_MAX_WORDS];
uint32_t e_buf[LITE_BN_BYTES / sizeof(uint32_t)];
struct LITE_BIGNUM padded;
struct LITE_BIGNUM encrypted;
int ret;
if (!check_modulus_params(&rsa->N, sizeof(padded_buf), out_len))
return 0;
bn_init(&padded, padded_buf, bn_size(&rsa->N));
bn_init(&encrypted, out, bn_size(&rsa->N));
switch (padding) {
case PADDING_MODE_OAEP:
if (!oaep_pad((uint8_t *) padded.d, bn_size(&padded),
(const uint8_t *) in, in_len, hashing, label))
return 0;
break;
case PADDING_MODE_PKCS1:
if (!pkcs1_type2_pad((uint8_t *) padded.d, bn_size(&padded),
(const uint8_t *) in, in_len))
return 0;
break;
case PADDING_MODE_NULL:
/* Input is allowed to have more bytes than N, in
* which case the excess must be zero. */
for (; in_len > bn_size(&padded); in_len--)
if (*in++ != 0)
return 0;
p = (uint8_t *) padded.d;
/* If in_len < bn_size(&padded), padded will
* have leading zero bytes. */
memcpy(&p[bn_size(&padded) - in_len], in, in_len);
/* TODO(ngm): in may be > N, bn_mod_exp() should
* handle this case. */
break;
default:
return 0; /* Unsupported padding mode. */
}
/* Reverse from big-endian to little-endian notation. */
reverse((uint8_t *) padded.d, bn_size(&padded));
ret = bn_modexp_word(&encrypted, &padded, rsa->e, &rsa->N);
/* Back to big-endian notation. */
reverse((uint8_t *) encrypted.d, bn_size(&encrypted));
*out_len = bn_size(&encrypted);
always_memset(padded_buf, 0, sizeof(padded_buf));
always_memset(e_buf, 0, sizeof(e_buf));
return ret;
}
int DCRYPTO_rsa_decrypt(struct RSA *rsa, uint8_t *out, uint32_t *out_len,
const uint8_t *in, const uint32_t in_len,
enum padding_mode padding, enum hashing_mode hashing,
const char *label)
{
uint32_t encrypted_buf[RSA_MAX_WORDS];
uint32_t padded_buf[RSA_MAX_WORDS];
struct LITE_BIGNUM encrypted;
struct LITE_BIGNUM padded;
int ret;
if (!check_modulus_params(&rsa->N, sizeof(padded_buf), NULL))
return 0;
if (in_len != bn_size(&rsa->N))
return 0; /* Invalid input length. */
/* TODO(ngm): this copy can be eliminated if input may be modified. */
bn_init(&encrypted, encrypted_buf, in_len);
memcpy(encrypted_buf, in, in_len);
bn_init(&padded, padded_buf, in_len);
/* Reverse from big-endian to little-endian notation. */
reverse((uint8_t *) encrypted.d, encrypted.dmax * LITE_BN_BYTES);
ret = bn_modexp_blinded(&padded, &encrypted, &rsa->d, &rsa->N, rsa->e);
/* Back to big-endian notation. */
reverse((uint8_t *) padded.d, padded.dmax * LITE_BN_BYTES);
switch (padding) {
case PADDING_MODE_OAEP:
if (!check_oaep_pad(out, out_len, (uint8_t *) padded.d,
bn_size(&padded), hashing, label))
ret = 0;
break;
case PADDING_MODE_PKCS1:
if (!check_pkcs1_type2_pad(
out, out_len, (const uint8_t *) padded.d,
bn_size(&padded)))
ret = 0;
break;
case PADDING_MODE_NULL:
if (*out_len < bn_size(&padded)) {
ret = 0;
} else {
*out_len = bn_size(&padded);
memcpy(out, padded.d, *out_len);
}
break;
default:
/* Unsupported padding mode. */
ret = 0;
break;
}
always_memset(encrypted_buf, 0, sizeof(encrypted_buf));
always_memset(padded_buf, 0, sizeof(padded_buf));
return ret;
}
int DCRYPTO_rsa_sign(struct RSA *rsa, uint8_t *out, uint32_t *out_len,
const uint8_t *in, const uint32_t in_len,
enum padding_mode padding, enum hashing_mode hashing)
{
uint32_t padded_buf[RSA_MAX_WORDS];
struct LITE_BIGNUM padded;
struct LITE_BIGNUM signature;
int ret;
if (!check_modulus_params(&rsa->N, sizeof(padded_buf), out_len))
return 0;
bn_init(&padded, padded_buf, bn_size(&rsa->N));
bn_init(&signature, out, bn_size(&rsa->N));
switch (padding) {
case PADDING_MODE_PKCS1:
if (!pkcs1_type1_pad((uint8_t *) padded.d, bn_size(&padded),
(const uint8_t *) in, in_len, hashing))
return 0;
break;
case PADDING_MODE_PSS:
if (!pkcs1_pss_pad((uint8_t *) padded.d, bn_size(&padded),
(const uint8_t *) in, in_len, hashing))
return 0;
break;
default:
return 0;
}
/* Reverse from big-endian to little-endian notation. */
reverse((uint8_t *) padded.d, bn_size(&padded));
ret = bn_modexp_blinded(&signature, &padded, &rsa->d, &rsa->N, rsa->e);
/* Back to big-endian notation. */
reverse((uint8_t *) signature.d, bn_size(&signature));
*out_len = bn_size(&rsa->N);
always_memset(padded_buf, 0, sizeof(padded_buf));
return ret;
}
int DCRYPTO_rsa_verify(const struct RSA *rsa, const uint8_t *digest,
uint32_t digest_len, const uint8_t *sig,
const uint32_t sig_len, enum padding_mode padding,
enum hashing_mode hashing)
{
uint32_t padded_buf[RSA_WORDS_4K];
uint32_t signature_buf[RSA_WORDS_4K];
struct LITE_BIGNUM padded;
struct LITE_BIGNUM signature;
int ret;
if (!check_modulus_params(&rsa->N, sizeof(padded_buf), NULL))
return 0;
if (sig_len != bn_size(&rsa->N))
return 0; /* Invalid input length. */
bn_init(&signature, signature_buf, bn_size(&rsa->N));
memcpy(signature_buf, sig, bn_size(&rsa->N));
bn_init(&padded, padded_buf, bn_size(&rsa->N));
/* Reverse from big-endian to little-endian notation. */
reverse((uint8_t *) signature.d, bn_size(&signature));
ret = bn_modexp_word(&padded, &signature, rsa->e, &rsa->N);
/* Back to big-endian notation. */
reverse((uint8_t *) padded.d, bn_size(&padded));
switch (padding) {
case PADDING_MODE_PKCS1:
if (!check_pkcs1_type1_pad(
digest, digest_len, (uint8_t *) padded.d,
bn_size(&padded), hashing))
ret = 0;
break;
case PADDING_MODE_PSS:
if (!check_pkcs1_pss_pad(
digest, digest_len, (uint8_t *) padded.d,
bn_size(&padded), hashing))
ret = 0;
break;
default:
/* Unsupported padding mode. */
ret = 0;
break;
}
always_memset(padded_buf, 0, sizeof(padded_buf));
always_memset(signature_buf, 0, sizeof(signature_buf));
return ret;
}
int DCRYPTO_rsa_key_compute(struct LITE_BIGNUM *N, struct LITE_BIGNUM *d,
struct LITE_BIGNUM *p, struct LITE_BIGNUM *q,
uint32_t e_buf)
{
uint32_t ONE_buf = 1;
uint32_t phi_buf[RSA_MAX_WORDS];
uint32_t q_buf[RSA_MAX_WORDS / 2 + 1];
struct LITE_BIGNUM ONE;
struct LITE_BIGNUM e;
struct LITE_BIGNUM phi;
struct LITE_BIGNUM q_local;
DCRYPTO_bn_wrap(&ONE, &ONE_buf, sizeof(ONE_buf));
DCRYPTO_bn_wrap(&phi, phi_buf, bn_size(N));
if (!q) {
/* q not provided, calculate it. */
memcpy(phi_buf, N->d, bn_size(N));
bn_init(&q_local, q_buf, bn_size(p));
q = &q_local;
if (!DCRYPTO_bn_div(q, NULL, &phi, p))
return 0;
/* Check that p * q == N */
DCRYPTO_bn_mul(&phi, p, q);
if (!bn_eq(N, &phi))
return 0;
} else {
DCRYPTO_bn_mul(N, p, q);
memcpy(phi_buf, N->d, bn_size(N));
}
bn_sub(&phi, p);
bn_sub(&phi, q);
bn_add(&phi, &ONE);
DCRYPTO_bn_wrap(&e, &e_buf, sizeof(e_buf));
return bn_modinv_vartime(d, &e, &phi);
}
|