1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
|
/* Copyright 2017 The ChromiumOS Authors
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Power and battery LED control for Nami and its variants
*
* This is an event-driven LED control library. It does not use tasks or
* periodical hooks (HOOK_TICK, HOOK_SECOND), thus, it's more resource
* efficient.
*
* The library defines LED states and assigns an LED behavior to each state.
* The state space consists of tuple of (charge state, power state).
* In each LED state, a color and a pulse interval can be defined.
*
* Charging states are queried each time there is a state transition, thus, not
* stored. We hook power state transitions (e.g. s0->s3) and save the
* destination states (e.g. s3) in power_state.
*
* When system is suspending and AC is unplugged, there will be race condition
* between a power state hook and a charge state hook but whichever is called
* first or last the result will be the same.
*
* Currently, it supports two LEDs, called 'battery LED' and 'power LED'.
* It assumes the battery LED is connected to a PWM pin and the power LED is
* connected to a regular GPIO pin.
*/
#include "cros_board_info.h"
#include "charge_state.h"
#include "chipset.h"
#include "console.h"
#include "ec_commands.h"
#include "gpio.h"
#include "hooks.h"
#include "led_common.h"
#include "power.h"
#include "pwm.h"
#include "timer.h"
#include "util.h"
const enum ec_led_id supported_led_ids[] = { EC_LED_ID_BATTERY_LED,
EC_LED_ID_POWER_LED };
const int supported_led_ids_count = ARRAY_SIZE(supported_led_ids);
enum led_color {
LED_OFF = 0,
LED_RED,
LED_GREEN,
LED_AMBER,
LED_WHITE,
LED_WARM_WHITE,
LED_FACTORY,
/* Number of colors, not a color itself */
LED_COLOR_COUNT
};
/* Charging states of LED's interests */
enum led_charge_state {
LED_STATE_DISCHARGE = 0,
LED_STATE_CHARGE,
LED_STATE_FULL,
LED_CHARGE_STATE_COUNT,
};
/* Power states of LED's interests */
enum led_power_state {
LED_STATE_S0 = 0,
LED_STATE_S3,
LED_STATE_S5,
LED_POWER_STATE_COUNT,
};
/* Defines a LED pattern for a single state */
struct led_pattern {
uint8_t color;
/* Bit 0-5: Interval in 100 msec. 0=solid. Max is 3.2 sec.
* Bit 6: 1=alternate (on-off-off-off), 0=regular (on-off-on-off)
* Bit 7: 1=pulse, 0=blink */
uint8_t pulse;
};
#define PULSE_NO 0
#define PULSE(interval) (BIT(7) | (interval))
#define BLINK(interval) (interval)
#define ALTERNATE(interval) (BIT(6) | (interval))
#define IS_PULSING(pulse) ((pulse)&0x80)
#define IS_ALTERNATE(pulse) ((pulse)&0x40)
#define PULSE_INTERVAL(pulse) (((pulse)&0x3f) * 100 * MSEC)
/* 40 msec for nice and smooth transition. */
#define LED_PULSE_TICK_US (40 * MSEC)
typedef struct led_pattern led_patterns[LED_CHARGE_STATE_COUNT]
[LED_POWER_STATE_COUNT];
/*
* Nami/Vayne - One dual color LED:
* Charging Amber on (S0/S3/S5)
* Charging (full) White on (S0/S3/S5)
* Discharge in S0 White on
* Discharge in S3/S0ix Pulsing (rising for 2 sec , falling for 2 sec)
* Discharge in S5 Off
* Battery Error Amber on 1sec off 1sec
* Factory mode White on 2sec, Amber on 2sec
*/
const static led_patterns battery_pattern_0 = {
/* discharging: s0, s3, s5 */
{ { LED_WHITE, PULSE_NO },
{ LED_WHITE, PULSE(10) },
{ LED_OFF, PULSE_NO } },
/* charging: s0, s3, s5 */
{ { LED_AMBER, PULSE_NO },
{ LED_AMBER, PULSE_NO },
{ LED_AMBER, PULSE_NO } },
/* full: s0, s3, s5 */
{ { LED_WHITE, PULSE_NO },
{ LED_WHITE, PULSE_NO },
{ LED_WHITE, PULSE_NO } },
};
/*
* Sona - Battery LED (dual color)
*/
const static led_patterns battery_pattern_1 = {
/* discharging: s0, s3, s5 */
{ { LED_OFF, PULSE_NO }, { LED_OFF, PULSE_NO }, { LED_OFF, PULSE_NO } },
/* charging: s0, s3, s5 */
{ { LED_AMBER, PULSE_NO },
{ LED_AMBER, PULSE_NO },
{ LED_AMBER, PULSE_NO } },
/* full: s0, s3, s5 */
{ { LED_WHITE, PULSE_NO },
{ LED_WHITE, PULSE_NO },
{ LED_WHITE, PULSE_NO } },
};
/*
* Pantheon - AC In/Battery LED(dual color):
* Connected to AC power / Charged (100%) White (solid on)
* Connected to AC power / Charging(1% -99%) Amber (solid on)
* Not connected to AC power Off
*/
const static led_patterns battery_pattern_2 = {
/* discharging: s0, s3, s5 */
{ { LED_OFF, PULSE_NO }, { LED_OFF, PULSE_NO }, { LED_OFF, PULSE_NO } },
/* charging: s0, s3, s5 */
{ { LED_AMBER, PULSE_NO },
{ LED_AMBER, PULSE_NO },
{ LED_AMBER, PULSE_NO } },
/* full: s0, s3, s5 */
{ { LED_WHITE, PULSE_NO },
{ LED_WHITE, PULSE_NO },
{ LED_WHITE, PULSE_NO } },
};
/*
* Sona - Power LED (single color)
*/
const static led_patterns power_pattern_1 = {
/* discharging: s0, s3, s5 */
{ { LED_WHITE, PULSE_NO },
{ LED_WHITE, BLINK(10) },
{ LED_OFF, PULSE_NO } },
/* charging: s0, s3, s5 */
{ { LED_WHITE, PULSE_NO },
{ LED_WHITE, BLINK(10) },
{ LED_OFF, PULSE_NO } },
/* full: s0, s3, s5 */
{ { LED_WHITE, PULSE_NO },
{ LED_WHITE, BLINK(10) },
{ LED_OFF, PULSE_NO } },
};
/*
* Pantheon - Power LED
* S0: White on
* S3/S0ix: White 1 second on, 3 second off
* S5: Off
*/
const static led_patterns power_pattern_2 = {
/* discharging: s0, s3, s5 */
{ { LED_WHITE, 0 },
{ LED_WHITE, ALTERNATE(BLINK(10)) },
{ LED_OFF, 0 } },
/* charging: s0, s3, s5 */
{ { LED_WHITE, 0 },
{ LED_WHITE, ALTERNATE(BLINK(10)) },
{ LED_OFF, 0 } },
/* full: s0, s3, s5 */
{ { LED_WHITE, 0 },
{ LED_WHITE, ALTERNATE(BLINK(10)) },
{ LED_OFF, 0 } },
};
/*
* Akali - battery LED
* Charge: Amber on (s0/s3/s5)
* Full: Blue on (s0/s3/s5)
* Discharge in S0: Blue on
* Discharge in S3: Amber on 1 sec off 3 sec
* Discharge in S5: Off
* Battery Error: Amber on 1sec off 1sec
* Factory mode : Blue on 2sec, Amber on 2sec
*/
const static led_patterns battery_pattern_3 = {
/* discharging: s0, s3, s5 */
{ { LED_WHITE, 0 },
{ LED_AMBER, ALTERNATE(BLINK(10)) },
{ LED_OFF, 0 } },
/* charging: s0, s3, s5 */
{ { LED_AMBER, PULSE_NO },
{ LED_AMBER, PULSE_NO },
{ LED_AMBER, PULSE_NO } },
/* full: s0, s3, s5 */
{ { LED_WHITE, PULSE_NO },
{ LED_WHITE, PULSE_NO },
{ LED_WHITE, PULSE_NO } },
};
const static led_patterns battery_pattern_4 = {
/* discharging: s0, s3, s5 */
{ { LED_WHITE, PULSE_NO },
{ LED_WHITE, BLINK(10) },
{ LED_OFF, PULSE_NO } },
/* charging: s0, s3, s5 */
{ { LED_AMBER, PULSE_NO },
{ LED_AMBER, PULSE_NO },
{ LED_AMBER, PULSE_NO } },
/* full: s0, s3, s5 */
{ { LED_WHITE, PULSE_NO },
{ LED_WHITE, PULSE_NO },
{ LED_WHITE, PULSE_NO } },
};
/* Patterns for battery LED and power LED. Initialized at run-time. */
static led_patterns const *patterns[2];
/* Pattern for battery error. Only blinking battery LED is supported. */
static struct led_pattern battery_error = { LED_AMBER, BLINK(10) };
/* Pattern for low state of charge. Only battery LED is supported. */
static struct led_pattern low_battery = { LED_WHITE, BLINK(10) };
/* Pattern for factory mode. Blinking 2-color battery LED. */
static struct led_pattern battery_factory = { LED_FACTORY, BLINK(20) };
static int low_battery_soc;
static void led_charge_hook(void);
static enum led_power_state power_state;
static void led_init(void)
{
switch (oem) {
case PROJECT_NAMI:
case PROJECT_VAYNE:
patterns[0] = &battery_pattern_0;
break;
case PROJECT_SONA:
if (model == MODEL_SYNDRA) {
/* Syndra doesn't have power LED */
patterns[0] = &battery_pattern_4;
} else {
patterns[0] = &battery_pattern_1;
patterns[1] = &power_pattern_1;
}
battery_error.pulse = BLINK(5);
low_battery_soc = 100; /* 10.0% */
break;
case PROJECT_PANTHEON:
patterns[0] = &battery_pattern_2;
patterns[1] = &power_pattern_2;
battery_error.color = LED_OFF;
battery_error.pulse = 0;
break;
case PROJECT_AKALI:
patterns[0] = &battery_pattern_3;
break;
default:
break;
}
pwm_enable(PWM_CH_LED1, 1);
pwm_enable(PWM_CH_LED2, 1);
/* After sysjump, power_state is cleared. Thus, we need to actively
* retrieve it. */
if (chipset_in_state(CHIPSET_STATE_ANY_OFF))
power_state = LED_STATE_S5;
else if (chipset_in_state(CHIPSET_STATE_ANY_SUSPEND))
power_state = LED_STATE_S3;
else
power_state = LED_STATE_S0;
}
DECLARE_HOOK(HOOK_INIT, led_init, HOOK_PRIO_DEFAULT);
static int set_color_battery(enum led_color color, int duty)
{
int led1 = 0;
int led2 = 0;
if (duty < 0 || 100 < duty)
return EC_ERROR_UNKNOWN;
switch (color) {
case LED_OFF:
break;
case LED_AMBER:
led2 = 1;
break;
case LED_WHITE:
led1 = 1;
break;
case LED_WARM_WHITE:
led1 = 1;
led2 = 1;
break;
case LED_FACTORY:
break;
default:
return EC_ERROR_UNKNOWN;
}
if (color != LED_FACTORY) {
pwm_set_duty(PWM_CH_LED1, led1 ? duty : 0);
pwm_set_duty(PWM_CH_LED2, led2 ? duty : 0);
} else {
pwm_set_duty(PWM_CH_LED1, duty ? 100 : 0);
pwm_set_duty(PWM_CH_LED2, duty ? 0 : 100);
}
return EC_SUCCESS;
}
static int set_color_power(enum led_color color, int duty)
{
if (color == LED_OFF)
duty = 0;
gpio_set_level(GPIO_LED1, !duty /* Reversed logic */);
return EC_SUCCESS;
}
static int set_color(enum ec_led_id id, enum led_color color, int duty)
{
switch (id) {
case EC_LED_ID_BATTERY_LED:
return set_color_battery(color, duty);
case EC_LED_ID_POWER_LED:
return set_color_power(color, duty);
default:
return EC_ERROR_UNKNOWN;
}
}
static struct {
uint32_t interval;
int duty_inc;
enum led_color color;
int duty;
int alternate;
uint8_t pulse;
} tick[2];
static void tick_battery(void);
DECLARE_DEFERRED(tick_battery);
static void tick_power(void);
DECLARE_DEFERRED(tick_power);
static void cancel_tick(enum ec_led_id id)
{
if (id == EC_LED_ID_BATTERY_LED)
hook_call_deferred(&tick_battery_data, -1);
else
hook_call_deferred(&tick_power_data, -1);
}
static int config_tick(enum ec_led_id id, const struct led_pattern *pattern)
{
static const struct led_pattern *patterns[2];
uint32_t stride;
if (pattern == patterns[id])
/* This pattern was already set */
return -1;
patterns[id] = pattern;
if (!pattern->pulse) {
/* This is a steady pattern. cancel the tick */
cancel_tick(id);
set_color(id, pattern->color, 100);
return 1;
}
stride = PULSE_INTERVAL(pattern->pulse);
if (IS_PULSING(pattern->pulse)) {
tick[id].interval = LED_PULSE_TICK_US;
tick[id].duty_inc = 100 / (stride / LED_PULSE_TICK_US);
} else {
tick[id].interval = stride;
tick[id].duty_inc = 100;
}
tick[id].color = pattern->color;
tick[id].duty = 0;
tick[id].alternate = 0;
tick[id].pulse = pattern->pulse;
return 0;
}
/*
* When pulsing, brightness is incremented by <duty_inc> every <interval> usec
* from 0 to 100%. Then it's decremented from 100% to 0.
*/
static void pulse_led(enum ec_led_id id)
{
if (tick[id].duty + tick[id].duty_inc > 100) {
tick[id].duty_inc = tick[id].duty_inc * -1;
} else if (tick[id].duty + tick[id].duty_inc < 0) {
if (IS_ALTERNATE(tick[id].pulse)) {
/* Falling phase landing. Flip the alternate flag. */
tick[id].alternate = !tick[id].alternate;
if (tick[id].alternate)
return;
}
tick[id].duty_inc = tick[id].duty_inc * -1;
}
tick[id].duty += tick[id].duty_inc;
set_color(id, tick[id].color, tick[id].duty);
}
static uint32_t tick_led(enum ec_led_id id)
{
uint32_t elapsed;
uint32_t start = get_time().le.lo;
uint32_t next;
if (led_auto_control_is_enabled(id))
pulse_led(id);
if (tick[id].alternate)
/* Skip 2 phases (rising & falling) */
next = PULSE_INTERVAL(tick[id].pulse) * 2;
else
next = tick[id].interval;
elapsed = get_time().le.lo - start;
return next > elapsed ? next - elapsed : 0;
}
static void tick_battery(void)
{
hook_call_deferred(&tick_battery_data, tick_led(EC_LED_ID_BATTERY_LED));
}
static void tick_power(void)
{
hook_call_deferred(&tick_power_data, tick_led(EC_LED_ID_POWER_LED));
}
static void start_tick(enum ec_led_id id, const struct led_pattern *pattern)
{
if (config_tick(id, pattern))
/*
* If this pattern is already active, ticking must have started
* already. So, we don't re-start ticking to prevent LED from
* blinking at every SOC change.
*
* If this pattern is static, we skip ticking as well.
*/
return;
if (id == EC_LED_ID_BATTERY_LED)
tick_battery();
else
tick_power();
}
static void led_alert(int enable)
{
if (enable)
start_tick(EC_LED_ID_BATTERY_LED, &battery_error);
else
led_charge_hook();
}
static void led_factory(int enable)
{
if (enable)
start_tick(EC_LED_ID_BATTERY_LED, &battery_factory);
else
led_charge_hook();
}
void config_led(enum ec_led_id id, enum led_charge_state charge)
{
const led_patterns *pattern;
pattern = patterns[id];
if (!pattern)
return; /* This LED isn't present */
start_tick(id, &(*pattern)[charge][power_state]);
}
void config_leds(enum led_charge_state charge)
{
config_led(EC_LED_ID_BATTERY_LED, charge);
config_led(EC_LED_ID_POWER_LED, charge);
}
static void call_handler(void)
{
int soc;
enum charge_state cs;
if (!led_auto_control_is_enabled(EC_LED_ID_BATTERY_LED))
return;
cs = charge_get_state();
soc = charge_get_display_charge();
if (soc < 0)
cs = PWR_STATE_ERROR;
switch (cs) {
case PWR_STATE_DISCHARGE:
case PWR_STATE_DISCHARGE_FULL:
if (soc < low_battery_soc)
start_tick(EC_LED_ID_BATTERY_LED, &low_battery);
else
config_led(EC_LED_ID_BATTERY_LED, LED_STATE_DISCHARGE);
config_led(EC_LED_ID_POWER_LED, LED_STATE_DISCHARGE);
break;
case PWR_STATE_CHARGE_NEAR_FULL:
case PWR_STATE_CHARGE:
if (soc >= 1000)
config_leds(LED_STATE_FULL);
else
config_leds(LED_STATE_CHARGE);
break;
case PWR_STATE_ERROR:
/* It doesn't matter what 'charge' state we pass because power
* LED (if it exists) is orthogonal to battery state. */
config_led(EC_LED_ID_POWER_LED, 0);
led_alert(1);
break;
case PWR_STATE_IDLE:
/* External power connected in IDLE. */
break;
case PWR_STATE_FORCED_IDLE:
/* This is used to show factory mode when
* 'ectool chargecontrol idle' is run during factory process.
*/
led_factory(1);
break;
default:;
}
}
/* LED state transition handlers */
static void s0(void)
{
power_state = LED_STATE_S0;
call_handler();
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, s0, HOOK_PRIO_DEFAULT);
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, s0, HOOK_PRIO_DEFAULT);
static void s3(void)
{
power_state = LED_STATE_S3;
call_handler();
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, s3, HOOK_PRIO_DEFAULT);
static void s5(void)
{
power_state = LED_STATE_S5;
call_handler();
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, s5, HOOK_PRIO_DEFAULT);
static void led_charge_hook(void)
{
call_handler();
}
DECLARE_HOOK(HOOK_BATTERY_SOC_CHANGE, led_charge_hook, HOOK_PRIO_DEFAULT);
static void print_config(enum ec_led_id id)
{
ccprintf("ID:%d\n", id);
ccprintf(" Color:%d\n", tick[id].color);
ccprintf(" Duty:%d\n", tick[id].duty);
ccprintf(" Duty Increment:%d\n", tick[id].duty_inc);
ccprintf(" Interval:%d\n", tick[id].interval);
}
static int command_led(int argc, const char **argv)
{
enum ec_led_id id = EC_LED_ID_BATTERY_LED;
static int alert = 0;
static int factory;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
if (!strcasecmp(argv[1], "debug")) {
led_auto_control(id, !led_auto_control_is_enabled(id));
ccprintf("o%s\n", led_auto_control_is_enabled(id) ? "ff" : "n");
} else if (!strcasecmp(argv[1], "off")) {
set_color(id, LED_OFF, 0);
} else if (!strcasecmp(argv[1], "red")) {
set_color(id, LED_RED, 100);
} else if (!strcasecmp(argv[1], "white")) {
set_color(id, LED_WHITE, 100);
} else if (!strcasecmp(argv[1], "amber")) {
set_color(id, LED_AMBER, 100);
} else if (!strcasecmp(argv[1], "alert")) {
alert = !alert;
led_alert(alert);
} else if (!strcasecmp(argv[1], "s0")) {
s0();
} else if (!strcasecmp(argv[1], "s3")) {
s3();
} else if (!strcasecmp(argv[1], "s5")) {
s5();
} else if (!strcasecmp(argv[1], "conf")) {
print_config(id);
} else if (!strcasecmp(argv[1], "factory")) {
factory = !factory;
led_factory(factory);
} else {
return EC_ERROR_PARAM1;
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(
led, command_led,
"[debug|red|green|amber|off|alert|s0|s3|s5|conf|factory]",
"Turn on/off LED.");
void led_get_brightness_range(enum ec_led_id led_id, uint8_t *brightness_range)
{
/*
* We return amber=100, white=100 regardless of OEM ID or led_id. This
* function is for ectool led command, which is used to test LED
* functionality.
*/
brightness_range[EC_LED_COLOR_AMBER] = 100;
brightness_range[EC_LED_COLOR_WHITE] = 100;
}
int led_set_brightness(enum ec_led_id id, const uint8_t *brightness)
{
if (brightness[EC_LED_COLOR_AMBER])
return set_color(id, LED_AMBER, brightness[EC_LED_COLOR_AMBER]);
else if (brightness[EC_LED_COLOR_WHITE])
return set_color(id, LED_WHITE, brightness[EC_LED_COLOR_WHITE]);
else
return set_color(id, LED_OFF, 0);
}
|