1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
/* Copyright 2016 The ChromiumOS Authors
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Hardware timers driver for ISH High Precision Event Timers (HPET) */
#include "console.h"
#include "hpet.h"
#include "hwtimer.h"
#include "timer.h"
#include "registers.h"
#include "task.h"
#include "util.h"
#define CPUTS(outstr) cputs(CC_CLOCK, outstr)
#define CPRINTS(format, args...) cprints(CC_CLOCK, format, ##args)
#define CPRINTF(format, args...) cprintf(CC_CLOCK, format, ##args)
static uint32_t last_deadline;
/*
* The ISH hardware needs at least 25 ticks of leeway to arms the timer.
* ISH4/5 are the slowest with 32kHz timers, so we wait at least 800us when
* scheduling events in the future
*/
#define MINIMUM_EVENT_DELAY_US 800
/*
* ISH HPET timer HW has latency for interrupt, on ISH5, this latency is about
* 3 ticks, defined this configuration to calibrate the 'last_deadline' which is
* updated in event timer interrupt ISR. Without this calibration, we could
* get negative sleep time in idle task for low power sleep process.
*/
#define HPET_INT_LATENCY_TICKS 3
/* Scaling helper methods for different ISH chip variants */
#ifdef CHIP_FAMILY_ISH3
#define CLOCK_FACTOR 12
BUILD_ASSERT(CLOCK_FACTOR *SECOND == ISH_HPET_CLK_FREQ);
static inline uint64_t scale_us2ticks(uint64_t us)
{
return us * CLOCK_FACTOR;
}
static inline uint32_t scale_us2ticks_32(uint32_t us)
{
/* no optimization for ISH3 */
return us * CLOCK_FACTOR;
}
static inline uint64_t scale_ticks2us(uint64_t ticks)
{
return ticks / CLOCK_FACTOR;
}
static inline void wait_while_settling(uint32_t mask)
{
/* Do nothing on ISH3, only ISH4 and ISH5 need settling */
}
#elif defined(CHIP_FAMILY_ISH4) || defined(CHIP_FAMILY_ISH5)
#define CLOCK_SCALE_BITS 15
BUILD_ASSERT(BIT(CLOCK_SCALE_BITS) == ISH_HPET_CLK_FREQ);
/* Slow version, for 64-bit precision */
static inline uint64_t scale_us2ticks(uint64_t us)
{
/* ticks = us * ISH_HPET_CLK_FREQ / SECOND */
return (us << CLOCK_SCALE_BITS) / SECOND;
}
/* Fast version, for 32-bit precision */
static inline uint32_t scale_us2ticks_32(uint32_t us)
{
/*
* GCC optimizes this shift/divide into multiplication by a
* magic number
*/
return (us << CLOCK_SCALE_BITS) / SECOND;
}
static inline uint64_t scale_ticks2us(uint64_t ticks)
{
return (ticks * SECOND) >> CLOCK_SCALE_BITS;
}
/*
* HPET Control & Status register may indicate that a value which has
* been written still needs propogated by hardware. Before updating
* HPET_TIMER_CONF_CAP(N), be sure to wait on the value settling with
* the corresponding mask (see hpet.h).
*/
static inline void wait_while_settling(uint32_t mask)
{
/* Wait for timer settings to settle ~ 150us */
while (HPET_CTRL_STATUS & mask)
continue;
}
#else
#error "Must define CHIP_FAMILY_ISH(3|4|5)"
#endif
/*
* The 64-bit read on a 32-bit chip can tear during the read. Ensure that the
* value returned for 64-bit didn't rollover while we were reading it.
*/
static inline uint64_t read_main_timer(void)
{
timestamp_t t;
uint32_t hi;
/* need check main counter if valid when exit low power TCG mode */
wait_while_settling(HPET_MAIN_COUNTER_VALID);
do {
t.le.hi = HPET_MAIN_COUNTER_64_HI;
t.le.lo = HPET_MAIN_COUNTER_64_LO;
hi = HPET_MAIN_COUNTER_64_HI;
} while (t.le.hi != hi);
return t.val;
}
void __hw_clock_event_set(uint32_t deadline)
{
uint32_t remaining_us;
uint32_t current_us;
uint64_t current_ticks;
/* 'current_ticks' is the current absolute 64bit HW timer counter */
current_ticks = read_main_timer();
/*
* 'current_us' is the low 32bit part of current time in 64bit micro
* seconds format, it's can express 2^32 micro seconds in maximum.
*/
current_us = scale_ticks2us(current_ticks);
/*
* To ensure HW has enough time to react to the new timer value,
* we make remaining time not less than 'MINIMUM_EVENT_DELAY_US'
*/
remaining_us = deadline - current_us;
remaining_us = MAX(remaining_us, MINIMUM_EVENT_DELAY_US);
/*
* Set new 64bit absolute timeout ticks to Timer 1 comparator
* register.
* For ISH3, this assumes that remaining_us is less than 360 seconds
* (2^32 us / 12Mhz), otherwise we would need to handle 32-bit rollover
* of 12Mhz timer comparator value. Watchdog refresh happens at least
* every 10 seconds.
*/
wait_while_settling(HPET_T1_CMP_SETTLING);
HPET_TIMER_COMP(1) = current_ticks + scale_us2ticks_32(remaining_us);
/*
* Update 'last_deadline' and add calibrate delta due to HPET timer
* interrupt latency.
*/
last_deadline = current_us + remaining_us;
last_deadline += scale_ticks2us(HPET_INT_LATENCY_TICKS);
/* Enable timer interrupt */
wait_while_settling(HPET_T1_SETTLING);
HPET_TIMER_CONF_CAP(1) |= HPET_Tn_INT_ENB_CNF;
}
uint32_t __hw_clock_event_get(void)
{
return last_deadline;
}
void __hw_clock_event_clear(void)
{
/*
* We need to make sure that process_timers is called when the
* event timer rolls over, set for deadline when
* process_timers clears the event timer.
*/
__hw_clock_event_set(0xFFFFFFFF);
}
uint64_t __hw_clock_source_read64(void)
{
return scale_ticks2us(read_main_timer());
}
void __hw_clock_source_set64(uint64_t timestamp)
{
/* Reset both clock and overflow comparators */
wait_while_settling(HPET_ANY_SETTLING);
HPET_GENERAL_CONFIG &= ~HPET_ENABLE_CNF;
HPET_MAIN_COUNTER_64 = scale_us2ticks(timestamp);
wait_while_settling(HPET_ANY_SETTLING);
HPET_GENERAL_CONFIG |= HPET_ENABLE_CNF;
}
static void hw_clock_event_isr(void)
{
/* Clear interrupt */
wait_while_settling(HPET_INT_STATUS_SETTLING);
HPET_INTR_CLEAR = BIT(1);
process_timers(0);
}
DECLARE_IRQ(ISH_HPET_TIMER1_IRQ, hw_clock_event_isr);
int __hw_clock_source_init64(uint64_t start_t)
{
/*
* Timer 1 is used as an event timer. Timer 0 is unused, as
* CONFIG_HWTIMER_64BIT is enabled.
*/
uint32_t timer1_config = 0x00000000;
/* Disable HPET */
wait_while_settling(HPET_ANY_SETTLING);
HPET_GENERAL_CONFIG &= ~HPET_ENABLE_CNF;
/* Disable T0 */
HPET_TIMER_CONF_CAP(0) &= ~HPET_Tn_INT_ENB_CNF;
/* Disable T1 until we get it set up (below) */
HPET_TIMER_CONF_CAP(1) &= ~HPET_Tn_INT_ENB_CNF;
/* Initialize main counter */
HPET_MAIN_COUNTER_64 = scale_us2ticks(start_t);
/* Clear any interrupts from previously running image */
HPET_INTR_CLEAR = BIT(0);
HPET_INTR_CLEAR = BIT(1);
/* Timer 1 - IRQ routing */
timer1_config &= ~HPET_Tn_INT_ROUTE_CNF_MASK;
timer1_config |= (ISH_HPET_TIMER1_IRQ << HPET_Tn_INT_ROUTE_CNF_SHIFT);
/* Level triggered interrupt */
timer1_config |= HPET_Tn_INT_TYPE_CNF;
/* Initialize last_deadline until an event is scheduled */
last_deadline = 0xFFFFFFFF;
/* Before enabling, previous values must have settled */
wait_while_settling(HPET_ANY_SETTLING);
/* Unmask HPET IRQ in IOAPIC */
task_enable_irq(ISH_HPET_TIMER1_IRQ);
/* Copy timer config to hardware register */
HPET_TIMER_CONF_CAP(1) |= timer1_config;
/* Enable HPET */
HPET_GENERAL_CONFIG |= (HPET_ENABLE_CNF | HPET_LEGACY_RT_CNF);
/* Return IRQ value for OS event timer */
return ISH_HPET_TIMER1_IRQ;
}
|