1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
|
/* Copyright 2019 The ChromiumOS Authors
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <stdnoreturn.h>
#include "aontaskfw/ish_aon_share.h"
#include "console.h"
#include "hwtimer.h"
#include "interrupts.h"
#include "ish_dma.h"
#include "ish_persistent_data.h"
#include "power_mgt.h"
#include "system.h"
#include "task.h"
#include "util.h"
#include "watchdog.h"
#define CPUTS(outstr) cputs(CC_SYSTEM, outstr)
#define CPRINTS(format, args...) cprints(CC_SYSTEM, format, ##args)
#define CPRINTF(format, args...) cprintf(CC_SYSTEM, format, ##args)
/* defined in link script: core/minute-ia/ec.lds.S */
extern uint32_t __aon_ro_start;
extern uint32_t __aon_ro_end;
extern uint32_t __aon_rw_start;
extern uint32_t __aon_rw_end;
static void pg_exit_restore_hw(void)
{
lapic_restore();
i2c_port_restore();
CCU_RST_HST = CCU_RST_HST;
CCU_TCG_ENABLE = 0;
CCU_BCG_ENABLE = 0;
CCU_BCG_MIA = 0;
CCU_BCG_DMA = 0;
CCU_BCG_I2C = 0;
CCU_BCG_SPI = 0;
CCU_BCG_UART = 0;
CCU_BCG_GPIO = 0;
}
/**
* on ISH, uart interrupt can only wakeup ISH from low power state via
* CTS pin, but most ISH platforms only have Rx and Tx pins, no CTS pin
* exposed, so, we need block ISH enter low power state for a while when
* console is in use.
* fixed amount of time to keep the console in use flag true after boot in
* order to give a permanent window in which the low speed clock is not used.
*/
#define CONSOLE_IN_USE_ON_BOOT_TIME (15 * SECOND)
/* power management internal context data structure */
struct pm_context {
/* aontask image valid flag */
int aon_valid;
/* point to the aon shared data in aontask */
struct ish_aon_share *aon_share;
/* TSS segment selector for task switching */
int aon_tss_selector[2];
/* console expire time */
timestamp_t console_expire_time;
/* console in use timeout */
int console_in_use_timeout_sec;
} __packed;
static struct pm_context pm_ctx = {
.aon_valid = 0,
/* aon shared data located in the start of aon memory */
.aon_share = (struct ish_aon_share *)CONFIG_AON_RAM_BASE,
.console_in_use_timeout_sec = 60
};
/* D0ix statistics data, including each state's count and total stay time */
struct pm_stat {
uint64_t count;
uint64_t total_time_us;
};
struct pm_statistics {
struct pm_stat d0i0;
struct pm_stat d0i1;
struct pm_stat d0i2;
struct pm_stat d0i3;
struct pm_stat pg;
};
static struct pm_statistics pm_stats;
/*
* Log a new statistic
*
* t0: start time, in us
* t1: end time, in us
*/
static void log_pm_stat(struct pm_stat *stat, uint32_t t0, uint32_t t1)
{
stat->total_time_us += t1 - t0;
stat->count++;
}
#ifdef CONFIG_ISH_PM_AONTASK
/* The GDT which initialized in init.S */
extern struct gdt_entry __gdt[];
extern struct gdt_header __gdt_ptr[];
/* TSS desccriptor for saving main FW's cpu context during aontask switching */
static struct tss_entry main_tss;
/**
* add new entry in GDT
* if defined 'CONFIG_ISH_PM_AONTASK', the GDT which defined in init.S will
* have 3 more empty placeholder entries, this function is help to update
* these entries which needed by x86's HW task switching method
*
* @param desc_lo lower DWORD of the entry descriptor
* @param desc_up upper DWORD of the entry descriptor
*
* @return the descriptor selector index of the added entry
*/
static uint32_t add_gdt_entry(uint32_t desc_lo, uint32_t desc_up)
{
int index;
/**
* get the first empty entry of GDT which defined in init.S
* each entry has a fixed size of 8 bytes
*/
index = __gdt_ptr[0].limit >> 3;
/* add the new entry descriptor to the GDT */
__gdt[index].dword_lo = desc_lo;
__gdt[index].dword_up = desc_up;
/* update GDT's limit size */
__gdt_ptr[0].limit += sizeof(struct gdt_entry);
return __gdt_ptr[0].limit - sizeof(struct gdt_entry);
}
static void init_aon_task(void)
{
uint32_t desc_lo, desc_up;
struct ish_aon_share *aon_share = pm_ctx.aon_share;
struct tss_entry *aon_tss = aon_share->aon_tss;
if (aon_share->magic_id != AON_MAGIC_ID) {
pm_ctx.aon_valid = 0;
return;
}
pm_ctx.aon_valid = 1;
pm_ctx.aon_tss_selector[0] = 0;
/* fill in the 3 placeholder GDT entries */
/* TSS's limit specified as 0x67, to allow the task has permission to
* access I/O port using IN/OUT instructions,'iomap_base_addr' field
* must be greater than or equal to TSS' limit
* see 'I/O port permissions' on
* https://en.wikipedia.org/wiki/Task_state_segment
*/
main_tss.iomap_base_addr = GDT_DESC_TSS_LIMIT;
/* set GDT entry 3 for TSS descriptor of main FW
* limit: 0x67
* Present = 1, DPL = 0
*/
desc_lo = GEN_GDT_DESC_LO((uint32_t)&main_tss, GDT_DESC_TSS_LIMIT,
GDT_DESC_TSS_FLAGS);
desc_up = GEN_GDT_DESC_UP((uint32_t)&main_tss, GDT_DESC_TSS_LIMIT,
GDT_DESC_TSS_FLAGS);
add_gdt_entry(desc_lo, desc_up);
/* set GDT entry 4 for TSS descriptor of aontask
* limit: 0x67
* Present = 1, DPL = 0, Accessed = 1
*/
desc_lo = GEN_GDT_DESC_LO((uint32_t)aon_tss, GDT_DESC_TSS_LIMIT,
GDT_DESC_TSS_FLAGS);
desc_up = GEN_GDT_DESC_UP((uint32_t)aon_tss, GDT_DESC_TSS_LIMIT,
GDT_DESC_TSS_FLAGS);
pm_ctx.aon_tss_selector[1] = add_gdt_entry(desc_lo, desc_up);
/* set GDT entry 5 for LDT descriptor of aontask
* Present = 1, DPL = 0, Readable = 1
*/
desc_lo = GEN_GDT_DESC_LO((uint32_t)aon_share->aon_ldt,
aon_share->aon_ldt_size, GDT_DESC_LDT_FLAGS);
desc_up = GEN_GDT_DESC_UP((uint32_t)aon_share->aon_ldt,
aon_share->aon_ldt_size, GDT_DESC_LDT_FLAGS);
aon_tss->ldt_seg_selector = add_gdt_entry(desc_lo, desc_up);
/* update GDT register and set current TSS as main_tss (GDT entry 3) */
__asm__ volatile("lgdt __gdt_ptr;\n"
"push %eax;\n"
"movw $0x18, %ax;\n"
"ltr %ax;\n"
"pop %eax;");
aon_share->main_fw_ro_addr = (uint32_t)&__aon_ro_start;
aon_share->main_fw_ro_size =
(uint32_t)&__aon_ro_end - (uint32_t)&__aon_ro_start;
aon_share->main_fw_rw_addr = (uint32_t)&__aon_rw_start;
aon_share->main_fw_rw_size =
(uint32_t)&__aon_rw_end - (uint32_t)&__aon_rw_start;
aon_share->uma_msb = IPC_UMA_RANGE_LOWER_1;
ish_dma_init();
}
static inline void check_aon_task_status(void)
{
struct ish_aon_share *aon_share = pm_ctx.aon_share;
if (aon_share->last_error != AON_SUCCESS) {
CPRINTF("aontask has errors:\n");
CPRINTF(" last error: %d\n", aon_share->last_error);
CPRINTF(" error counts: %d\n", aon_share->error_count);
}
}
static void switch_to_aontask(void)
{
interrupt_disable();
__sync_synchronize();
/* disable cache and flush cache */
__asm__ volatile("movl %%cr0, %%eax;\n"
"orl $0x60000000, %%eax;\n"
"movl %%eax, %%cr0;\n"
"wbinvd;"
:
:
: "eax");
/* switch to aontask through a far call with aontask's TSS selector */
__asm__ volatile("lcall *%0;" ::"m"(*pm_ctx.aon_tss_selector) :);
/* clear TS (Task Switched) flag and enable cache */
__asm__ volatile("clts;\n"
"movl %%cr0, %%eax;\n"
"andl $0x9FFFFFFF, %%eax;\n"
"movl %%eax, %%cr0;"
:
:
: "eax");
interrupt_enable();
}
noreturn static void handle_reset_in_aontask(enum ish_pm_state pm_state)
{
pm_ctx.aon_share->pm_state = pm_state;
/* only enable PMU wakeup interrupt */
disable_all_interrupts();
task_enable_irq(ISH_PMU_WAKEUP_IRQ);
if (IS_ENABLED(CONFIG_ISH_PM_RESET_PREP))
task_enable_irq(ISH_RESET_PREP_IRQ);
/* enable Trunk Clock Gating (TCG) of ISH */
CCU_TCG_EN = 1;
/* enable power gating of RF(Cache) and ROMs */
PMU_RF_ROM_PWR_CTRL = 1;
switch_to_aontask();
__builtin_unreachable();
}
#endif
static void enter_d0i0(void)
{
uint32_t t0, t1;
t0 = __hw_clock_source_read();
pm_ctx.aon_share->pm_state = ISH_PM_STATE_D0I0;
/* halt ISH cpu, will wakeup from any interrupt */
ish_mia_halt();
t1 = __hw_clock_source_read();
pm_ctx.aon_share->pm_state = ISH_PM_STATE_D0;
log_pm_stat(&pm_stats.d0i0, t0, t1);
}
/**
* ISH PMU does not support both-edge interrupt triggered gpio configuration.
* If both edges are configured, then the ISH can't stay in low poer mode
* because it will exit immediately.
*
* As a workaround, we scan all gpio pins which have been configured as
* both-edge triggered, and then temporarily set each gpio pin to the single
* edge trigger that is opposite of its value, then restore the both-edge
* trigger configuration immediately after exiting low power mode.
*/
static uint32_t convert_both_edge_gpio_to_single_edge(void)
{
uint32_t both_edge_pins = 0;
int i = 0;
/**
* scan GPIO GFER, GRER and GIMR registers to find the both edge
* interrupt trigger mode enabled pins.
*/
for (i = 0; i < 32; i++) {
if (ISH_GPIO_GIMR & BIT(i) && ISH_GPIO_GRER & BIT(i) &&
ISH_GPIO_GFER & BIT(i)) {
/* Record the pin so we can restore it later */
both_edge_pins |= BIT(i);
if (ISH_GPIO_GPLR & BIT(i)) {
/* pin is high, just keep falling edge mode */
ISH_GPIO_GRER &= ~BIT(i);
} else {
/* pin is low, just keep rising edge mode */
ISH_GPIO_GFER &= ~BIT(i);
}
}
}
return both_edge_pins;
}
static void restore_both_edge_gpio_config(uint32_t both_edge_pin_map)
{
ISH_GPIO_GRER |= both_edge_pin_map;
ISH_GPIO_GFER |= both_edge_pin_map;
}
static void enter_d0i1(void)
{
uint64_t current_irq_map;
uint32_t both_edge_gpio_pins;
uint32_t t0, t1;
/* only enable PMU wakeup interrupt */
current_irq_map = disable_all_interrupts();
task_enable_irq(ISH_PMU_WAKEUP_IRQ);
if (IS_ENABLED(CONFIG_ISH_PM_RESET_PREP))
task_enable_irq(ISH_RESET_PREP_IRQ);
t0 = __hw_clock_source_read();
pm_ctx.aon_share->pm_state = ISH_PM_STATE_D0I1;
both_edge_gpio_pins = convert_both_edge_gpio_to_single_edge();
/* enable Trunk Clock Gating (TCG) of ISH */
CCU_TCG_EN = 1;
/* halt ISH cpu, will wakeup from PMU wakeup interrupt */
ish_mia_halt();
if (IS_ENABLED(CONFIG_ISH_NEW_PM))
clear_fabric_error();
/* disable Trunk Clock Gating (TCG) of ISH */
CCU_TCG_EN = 0;
restore_both_edge_gpio_config(both_edge_gpio_pins);
pm_ctx.aon_share->pm_state = ISH_PM_STATE_D0;
t1 = __hw_clock_source_read();
log_pm_stat(&pm_stats.d0i1, t0, t1);
/* Reload watchdog before enabling interrupts again */
watchdog_reload();
/* restore interrupts */
task_disable_irq(ISH_PMU_WAKEUP_IRQ);
restore_interrupts(current_irq_map);
}
static void enter_d0i2(void)
{
uint64_t current_irq_map;
uint32_t both_edge_gpio_pins;
uint32_t t0, t1;
/* only enable PMU wakeup interrupt */
current_irq_map = disable_all_interrupts();
task_enable_irq(ISH_PMU_WAKEUP_IRQ);
if (IS_ENABLED(CONFIG_ISH_PM_RESET_PREP))
task_enable_irq(ISH_RESET_PREP_IRQ);
t0 = __hw_clock_source_read();
pm_ctx.aon_share->pm_state = ISH_PM_STATE_D0I2;
both_edge_gpio_pins = convert_both_edge_gpio_to_single_edge();
/* enable Trunk Clock Gating (TCG) of ISH */
CCU_TCG_EN = 1;
/* enable power gating of RF(Cache) and ROMs */
PMU_RF_ROM_PWR_CTRL = 1;
switch_to_aontask();
/* returned from aontask */
if (IS_ENABLED(CONFIG_ISH_IPAPG)) {
if (pm_ctx.aon_share->pg_exit)
pg_exit_restore_hw();
}
if (IS_ENABLED(CONFIG_ISH_NEW_PM))
clear_fabric_error();
/* disable power gating of RF(Cache) and ROMs */
PMU_RF_ROM_PWR_CTRL = 0;
/* disable Trunk Clock Gating (TCG) of ISH */
CCU_TCG_EN = 0;
restore_both_edge_gpio_config(both_edge_gpio_pins);
t1 = __hw_clock_source_read();
pm_ctx.aon_share->pm_state = ISH_PM_STATE_D0;
log_pm_stat(&pm_stats.d0i2, t0, t1);
if (IS_ENABLED(CONFIG_ISH_IPAPG)) {
if (pm_ctx.aon_share->pg_exit)
log_pm_stat(&pm_stats.pg, t0, t1);
}
/* Reload watchdog before enabling interrupts again */
watchdog_reload();
/* restore interrupts */
task_disable_irq(ISH_PMU_WAKEUP_IRQ);
restore_interrupts(current_irq_map);
}
static void enter_d0i3(void)
{
uint64_t current_irq_map;
uint32_t both_edge_gpio_pins;
uint32_t t0, t1;
/* only enable PMU wakeup interrupt */
current_irq_map = disable_all_interrupts();
task_enable_irq(ISH_PMU_WAKEUP_IRQ);
if (IS_ENABLED(CONFIG_ISH_PM_RESET_PREP))
task_enable_irq(ISH_RESET_PREP_IRQ);
t0 = __hw_clock_source_read();
pm_ctx.aon_share->pm_state = ISH_PM_STATE_D0I3;
both_edge_gpio_pins = convert_both_edge_gpio_to_single_edge();
/* enable Trunk Clock Gating (TCG) of ISH */
CCU_TCG_EN = 1;
/* enable power gating of RF(Cache) and ROMs */
PMU_RF_ROM_PWR_CTRL = 1;
switch_to_aontask();
/* returned from aontask */
if (IS_ENABLED(CONFIG_ISH_IPAPG)) {
if (pm_ctx.aon_share->pg_exit)
pg_exit_restore_hw();
}
if (IS_ENABLED(CONFIG_ISH_NEW_PM))
clear_fabric_error();
/* disable power gating of RF(Cache) and ROMs */
PMU_RF_ROM_PWR_CTRL = 0;
/* disable Trunk Clock Gating (TCG) of ISH */
CCU_TCG_EN = 0;
restore_both_edge_gpio_config(both_edge_gpio_pins);
t1 = __hw_clock_source_read();
pm_ctx.aon_share->pm_state = ISH_PM_STATE_D0;
log_pm_stat(&pm_stats.d0i3, t0, t1);
if (IS_ENABLED(CONFIG_ISH_IPAPG)) {
if (pm_ctx.aon_share->pg_exit)
log_pm_stat(&pm_stats.pg, t0, t1);
}
/* Reload watchdog before enabling interrupts again */
watchdog_reload();
/* restore interrupts */
task_disable_irq(ISH_PMU_WAKEUP_IRQ);
restore_interrupts(current_irq_map);
}
static int d0ix_decide(timestamp_t cur_time, uint32_t idle_us)
{
int pm_state = ISH_PM_STATE_D0I0;
if (DEEP_SLEEP_ALLOWED) {
/* check if the console use has expired. */
if (sleep_mask & SLEEP_MASK_CONSOLE) {
if (cur_time.val > pm_ctx.console_expire_time.val) {
enable_sleep(SLEEP_MASK_CONSOLE);
ccprints("Disabling console in deep sleep");
} else {
return pm_state;
}
}
if (IS_ENABLED(CONFIG_ISH_PM_D0I3) &&
idle_us >= CONFIG_ISH_D0I3_MIN_USEC && pm_ctx.aon_valid)
pm_state = ISH_PM_STATE_D0I3;
else if (IS_ENABLED(CONFIG_ISH_PM_D0I2) &&
idle_us >= CONFIG_ISH_D0I2_MIN_USEC &&
pm_ctx.aon_valid)
pm_state = ISH_PM_STATE_D0I2;
else if (IS_ENABLED(CONFIG_ISH_PM_D0I1))
pm_state = ISH_PM_STATE_D0I1;
}
return pm_state;
}
static void pre_setting_d0ix(void)
{
if (IS_ENABLED(CONFIG_ISH_NEW_PM)) {
PMU_VNN_REQ = PMU_VNN_REQ;
uart_to_idle();
}
}
static void post_setting_d0ix(void)
{
if (IS_ENABLED(CONFIG_ISH_NEW_PM))
uart_port_restore();
}
static void pm_process(timestamp_t cur_time, uint32_t idle_us)
{
int decide;
decide = d0ix_decide(cur_time, idle_us);
switch (decide) {
case ISH_PM_STATE_D0I1:
pre_setting_d0ix();
enter_d0i1();
post_setting_d0ix();
break;
case ISH_PM_STATE_D0I2:
pre_setting_d0ix();
enter_d0i2();
post_setting_d0ix();
check_aon_task_status();
break;
case ISH_PM_STATE_D0I3:
pre_setting_d0ix();
enter_d0i3();
post_setting_d0ix();
check_aon_task_status();
break;
default:
enter_d0i0();
break;
}
}
static void reset_bcg(void)
{
if (IS_ENABLED(CONFIG_ISH_NEW_PM)) {
CCU_BCG_MIA = 0;
CCU_BCG_DMA = 0;
CCU_BCG_I2C = 0;
CCU_BCG_SPI = 0;
CCU_BCG_UART = 0;
CCU_BCG_GPIO = 0;
} else {
CCU_BCG_EN = 0;
}
}
static void enable_d3bme_irqs(void)
{
task_enable_irq(ISH_D3_RISE_IRQ);
if (!IS_ENABLED(CONFIG_ISH_NEW_PM)) {
task_enable_irq(ISH_D3_FALL_IRQ);
task_enable_irq(ISH_BME_RISE_IRQ);
task_enable_irq(ISH_BME_FALL_IRQ);
}
}
void ish_pm_init(void)
{
/* clear reset bit */
ISH_RST_REG = 0;
/* clear reset history register in CCU */
CCU_RST_HST = CCU_RST_HST;
/* disable TCG and disable BCG */
CCU_TCG_EN = 0;
reset_bcg();
if (IS_ENABLED(CONFIG_ISH_PM_AONTASK))
init_aon_task();
if (IS_ENABLED(CONFIG_ISH_NEW_PM)) {
PMU_GPIO_WAKE_MASK0 = 0;
PMU_GPIO_WAKE_MASK1 = 0;
}
/* unmask all wake up events */
PMU_MASK_EVENT = ~PMU_MASK_EVENT_BIT_ALL;
if (IS_ENABLED(CONFIG_ISH_NEW_PM)) {
PMU_ISH_FABRIC_CNT = (PMU_ISH_FABRIC_CNT & 0xffff0000) |
FABRIC_IDLE_COUNT;
PMU_PGCB_CLKGATE_CTRL = TRUNK_CLKGATE_COUNT;
}
if (IS_ENABLED(CONFIG_ISH_PM_RESET_PREP)) {
/* unmask reset prep avail interrupt */
PMU_RST_PREP = 0;
task_enable_irq(ISH_RESET_PREP_IRQ);
}
if (IS_ENABLED(CONFIG_ISH_PM_D3)) {
/* unmask D3 and BME interrupts */
PMU_D3_STATUS &= (PMU_D3_BIT_SET | PMU_BME_BIT_SET);
if ((!(PMU_D3_STATUS & PMU_D3_BIT_SET)) &&
(PMU_D3_STATUS & PMU_BME_BIT_SET))
PMU_D3_STATUS = PMU_D3_STATUS;
enable_d3bme_irqs();
}
}
noreturn void ish_pm_reset(enum ish_pm_state pm_state)
{
if (IS_ENABLED(CONFIG_ISH_PM_AONTASK) && pm_ctx.aon_valid) {
handle_reset_in_aontask(pm_state);
} else {
ish_mia_reset();
}
__builtin_unreachable();
}
void __idle(void)
{
timestamp_t t0;
int next_delay = 0;
/**
* initialize console in use to true and specify the console expire
* time in order to give a fixed window on boot
*/
disable_sleep(SLEEP_MASK_CONSOLE);
pm_ctx.console_expire_time.val =
get_time().val + CONSOLE_IN_USE_ON_BOOT_TIME;
while (1) {
t0 = get_time();
next_delay = __hw_clock_event_get() - t0.le.lo;
/*
* Most of the time, 'next_delay' will be positive. But, due to
* interrupt latency, it's possible that get_time() returns
* the value bigger than the one from __hw_clock_event_get()
* which is supposed to be updated by ISR before control reaches
* to the get_time().
*
* Here, we handle the delayed update by changing negative to 0.
*/
pm_process(t0, MAX(0, next_delay));
}
}
/*
* helper for command_idle_stats
*/
static void print_stats(const char *name, const struct pm_stat *stat)
{
if (stat->count)
ccprintf(" %s:\n"
" counts: %llu\n"
" time: %.6llus\n",
name, stat->count, stat->total_time_us);
}
/**
* Print low power idle statistics
*/
static int command_idle_stats(int argc, const char **argv)
{
struct ish_aon_share *aon_share = pm_ctx.aon_share;
ccprintf("Aontask exists: %s\n", pm_ctx.aon_valid ? "Yes" : "No");
ccprintf("Total time on: %.6llus\n", get_time().val);
ccprintf("Idle sleep:\n");
print_stats("D0i0", &pm_stats.d0i0);
ccprintf("Deep sleep:\n");
print_stats("D0i1", &pm_stats.d0i1);
print_stats("D0i2", &pm_stats.d0i2);
print_stats("D0i3", &pm_stats.d0i3);
if (IS_ENABLED(CONFIG_ISH_IPAPG))
print_stats("IPAPG", &pm_stats.pg);
if (pm_ctx.aon_valid) {
ccprintf(" Aontask status:\n");
ccprintf(" last error: %u\n", aon_share->last_error);
ccprintf(" error counts: %u\n", aon_share->error_count);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(idlestats, command_idle_stats, "",
"Print power management statistics");
/**
* main FW only need handle PMU wakeup interrupt for D0i1 state, aontask will
* handle PMU wakeup interrupt for other low power states
*/
__maybe_unused static void pmu_wakeup_isr(void)
{
/* at current nothing need to do */
}
#ifdef CONFIG_ISH_PM_D0I1
DECLARE_IRQ(ISH_PMU_WAKEUP_IRQ, pmu_wakeup_isr);
#endif
/**
* from ISH5.0, when system doing S0->Sx transition, will receive reset prep
* interrupt, will switch to aontask for handling
*
*/
__maybe_unused noreturn static void reset_prep_isr(void)
{
/* mask reset prep avail interrupt */
PMU_RST_PREP = PMU_RST_PREP_INT_MASK;
/*
* Indicate completion of servicing the interrupt to IOAPIC first
* then indicate completion of servicing the interrupt to LAPIC
*/
IOAPIC_EOI_REG = ISH_RESET_PREP_VEC;
LAPIC_EOI_REG = 0x0;
system_reset(0);
__builtin_unreachable();
}
#ifdef CONFIG_ISH_PM_RESET_PREP
DECLARE_IRQ(ISH_RESET_PREP_IRQ, reset_prep_isr);
#endif
__maybe_unused static void handle_d3(uint32_t irq_vec)
{
PMU_D3_STATUS = PMU_D3_STATUS;
if (PMU_D3_STATUS & (PMU_D3_BIT_RISING_EDGE_STATUS | PMU_D3_BIT_SET)) {
/*
* Indicate completion of servicing the interrupt to IOAPIC
* first then indicate completion of servicing the interrupt
* to LAPIC
*/
IOAPIC_EOI_REG = irq_vec;
LAPIC_EOI_REG = 0x0;
ish_persistent_data_commit();
ish_pm_reset(ISH_PM_STATE_D3);
}
}
static void d3_rise_isr(void)
{
handle_d3(ISH_D3_RISE_VEC);
}
static __maybe_unused void d3_fall_isr(void)
{
handle_d3(ISH_D3_FALL_VEC);
}
static __maybe_unused void bme_rise_isr(void)
{
handle_d3(ISH_BME_RISE_VEC);
}
static __maybe_unused void bme_fall_isr(void)
{
handle_d3(ISH_BME_FALL_VEC);
}
#ifdef CONFIG_ISH_PM_D3
DECLARE_IRQ(ISH_D3_RISE_IRQ, d3_rise_isr);
#ifndef CONFIG_ISH_NEW_PM
DECLARE_IRQ(ISH_D3_FALL_IRQ, d3_fall_isr);
DECLARE_IRQ(ISH_BME_RISE_IRQ, bme_rise_isr);
DECLARE_IRQ(ISH_BME_FALL_IRQ, bme_fall_isr);
#endif
#endif
void ish_pm_refresh_console_in_use(void)
{
disable_sleep(SLEEP_MASK_CONSOLE);
/* Set console in use expire time. */
pm_ctx.console_expire_time = get_time();
pm_ctx.console_expire_time.val +=
pm_ctx.console_in_use_timeout_sec * SECOND;
}
|