1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
/* Copyright 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* NPCX-specific ADC module for Chrome EC */
#include "adc.h"
#include "adc_chip.h"
#include "atomic.h"
#include "clock.h"
#include "clock_chip.h"
#include "console.h"
#include "common.h"
#include "gpio.h"
#include "hooks.h"
#include "registers.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#define CPRINTS(format, args...) cprints(CC_SYSTEM, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_SYSTEM, format, ## args)
/* Maximum time we allow for an ADC conversion */
#define ADC_TIMEOUT_US SECOND
#define ADC_CLK 2000000
#define ADC_REGULAR_DLY 0x11
#define ADC_REGULAR_ADCCNF2 0x8B07
#define ADC_REGULAR_GENDLY 0x0100
#define ADC_REGULAR_MEAST 0x0001
/* ADC conversion mode */
enum npcx_adc_conversion_mode {
ADC_CHN_CONVERSION_MODE = 0,
ADC_SCAN_CONVERSION_MODE = 1
};
/* Global variables */
static volatile task_id_t task_waiting;
/**
* Preset ADC operation clock.
*
* @param none
* @return none
* @notes changed when initial or HOOK_FREQ_CHANGE command
*/
void adc_freq_changed(void)
{
uint8_t prescaler_divider = 0;
/* Set clock prescaler divider to ADC module*/
prescaler_divider = (uint8_t)(clock_get_apb1_freq() / ADC_CLK);
if (prescaler_divider >= 1)
prescaler_divider = prescaler_divider - 1;
if (prescaler_divider > 0x3F)
prescaler_divider = 0x3F;
/* Set Core Clock Division Factor in order to obtain the ADC clock */
SET_FIELD(NPCX_ATCTL, NPCX_ATCTL_SCLKDIV_FIELD, prescaler_divider);
}
DECLARE_HOOK(HOOK_FREQ_CHANGE, adc_freq_changed, HOOK_PRIO_DEFAULT);
/**
* Flush an ADC sequencer and initiate a read.
*
* @param input_ch operation channel
* @param timeout preset timeout
* @return TRUE/FALSE success/fail
* @notes set SW-triggered interrupt conversion and one-shot mode in npcx chip
*/
static int start_single_and_wait(enum npcx_adc_input_channel input_ch
, int timeout)
{
int event;
task_waiting = task_get_current();
/* Set ADC conversion code to SW conversion mode */
SET_FIELD(NPCX_ADCCNF, NPCX_ADCCNF_ADCMD_FIELD,
ADC_CHN_CONVERSION_MODE);
/* Set conversion type to one-shot type */
CLEAR_BIT(NPCX_ADCCNF, NPCX_ADCCNF_ADCRPTC);
/* Update number of channel to be converted */
SET_FIELD(NPCX_ASCADD, NPCX_ASCADD_SADDR_FIELD, input_ch);
/* Clear End-of-Conversion Event status */
SET_BIT(NPCX_ADCSTS, NPCX_ADCSTS_EOCEV);
/* Enable ADC End-of-Conversion Interrupt if applicable */
SET_BIT(NPCX_ADCCNF, NPCX_ADCCNF_INTECEN);
/* Start conversion */
SET_BIT(NPCX_ADCCNF, NPCX_ADCCNF_START);
/* Wait for interrupt */
event = task_wait_event_mask(TASK_EVENT_ADC_DONE, timeout);
task_waiting = TASK_ID_INVALID;
return (event == TASK_EVENT_ADC_DONE);
}
static uint16_t repetitive_enabled;
void npcx_set_adc_repetitive(enum npcx_adc_input_channel input_ch, int enable)
{
if (enable) {
/* Forbid EC enter deep sleep during conversion. */
disable_sleep(SLEEP_MASK_ADC);
/* Turn on ADC */
SET_BIT(NPCX_ADCCNF, NPCX_ADCCNF_ADCEN);
/* Set ADC conversion code to SW conversion mode */
SET_FIELD(NPCX_ADCCNF, NPCX_ADCCNF_ADCMD_FIELD,
ADC_SCAN_CONVERSION_MODE);
/* Update number of channel to be converted */
SET_BIT(NPCX_ADCCS, input_ch);
/* Set conversion type to repetitive (runs continuously) */
SET_BIT(NPCX_ADCCNF, NPCX_ADCCNF_ADCRPTC);
repetitive_enabled |= BIT(input_ch);
/* Start conversion */
SET_BIT(NPCX_ADCCNF, NPCX_ADCCNF_START);
} else {
CLEAR_BIT(NPCX_ADCCNF, NPCX_ADCCNF_ADCRPTC);
CLEAR_BIT(NPCX_ADCCS, input_ch);
repetitive_enabled &= ~BIT(input_ch);
if (!repetitive_enabled) {
/* Turn off ADC */
CLEAR_BIT(NPCX_ADCCNF, NPCX_ADCCNF_ADCEN);
/* Allow ec enter deep sleep */
enable_sleep(SLEEP_MASK_ADC);
}
}
}
/**
* ADC read specific channel.
*
* @param ch operation channel
* @return ADC converted voltage or error message
*/
int adc_read_channel(enum adc_channel ch)
{
const struct adc_t *adc = adc_channels + ch;
static struct mutex adc_lock;
int value;
uint16_t chn_data;
mutex_lock(&adc_lock);
/* Forbid ec enter deep sleep during ADC conversion is proceeding. */
disable_sleep(SLEEP_MASK_ADC);
/* Turn on ADC */
SET_BIT(NPCX_ADCCNF, NPCX_ADCCNF_ADCEN);
if (start_single_and_wait(adc->input_ch, ADC_TIMEOUT_US)) {
chn_data = NPCX_CHNDAT(adc->input_ch);
if ((adc->input_ch ==
GET_FIELD(NPCX_ASCADD, NPCX_ASCADD_SADDR_FIELD))
&& (IS_BIT_SET(chn_data,
NPCX_CHNDAT_NEW))) {
value = GET_FIELD(chn_data, NPCX_CHNDAT_CHDAT_FIELD) *
adc->factor_mul / adc->factor_div + adc->shift;
} else {
value = ADC_READ_ERROR;
}
} else {
value = ADC_READ_ERROR;
}
if (!repetitive_enabled) {
/* Turn off ADC */
CLEAR_BIT(NPCX_ADCCNF, NPCX_ADCCNF_ADCEN);
/* Allow ec enter deep sleep */
enable_sleep(SLEEP_MASK_ADC);
}
mutex_unlock(&adc_lock);
return value;
}
/* Board should register these callbacks with npcx_adc_cfg_thresh_int(). */
static void (*adc_thresh_irqs[NPCX_ADC_THRESH_CNT])(void);
void npcx_adc_thresh_int_enable(int threshold_idx, int enable)
{
enable = !!enable;
if ((threshold_idx < 1) || (threshold_idx > 3)) {
CPRINTS("Invalid ADC thresh index! (%d)",
threshold_idx);
return;
}
threshold_idx--; /* convert to 0-based */
if (enable)
SET_BIT(NPCX_THRCTS, NPCX_THRCTS_THR1_IEN+threshold_idx);
else
CLEAR_BIT(NPCX_THRCTS, NPCX_THRCTS_THR1_IEN+threshold_idx);
}
void npcx_adc_register_thresh_irq(int threshold_idx,
const struct npcx_adc_thresh_t *thresh_cfg)
{
int npcx_adc_ch;
int raw_val;
int mul;
int div;
int shift;
if ((threshold_idx < 1) || (threshold_idx > 3)) {
CPRINTS("Invalid ADC thresh index! (%d)",
threshold_idx);
return;
}
npcx_adc_ch = adc_channels[thresh_cfg->adc_ch].input_ch;
if (!thresh_cfg->adc_thresh_cb) {
CPRINTS("No callback for ADC Threshold %d!",
threshold_idx);
return;
}
/* Fill in the table */
adc_thresh_irqs[threshold_idx-1] = thresh_cfg->adc_thresh_cb;
/* Select the channel */
SET_FIELD(NPCX_THRCTL(threshold_idx), NPCX_THRCTL_CHNSEL,
npcx_adc_ch);
if (thresh_cfg->lower_or_higher)
SET_BIT(NPCX_THRCTL(threshold_idx), NPCX_THRCTL_L_H);
else
CLEAR_BIT(NPCX_THRCTL(threshold_idx), NPCX_THRCTL_L_H);
/*
* Set the single threshold value. This is also the assertion threshold
* value if dual threshold configuration is being used.
*/
mul = adc_channels[thresh_cfg->adc_ch].factor_mul;
div = adc_channels[thresh_cfg->adc_ch].factor_div;
shift = adc_channels[thresh_cfg->adc_ch].shift;
raw_val = (thresh_cfg->thresh_assert - shift) * div / mul;
CPRINTS("ADC THR%d: Setting THRVAL = %d, L_H: %d", threshold_idx,
raw_val, thresh_cfg->lower_or_higher);
SET_FIELD(NPCX_THRCTL(threshold_idx), NPCX_THRCTL_THRVAL,
raw_val);
/* Configure dual threshold detection if desired. */
if (thresh_cfg->thresh_deassert != -1) {
raw_val = (thresh_cfg->thresh_deassert - shift) * div / mul;
SET_FIELD(NPCX_THR_DCTL(threshold_idx),
NPCX_THR_DCTL_THR_DVAL,
raw_val);
SET_BIT(NPCX_THR_DCTL(threshold_idx), NPCX_THR_DCTL_THRD_EN);
} else {
CLEAR_BIT(NPCX_THR_DCTL(threshold_idx), NPCX_THR_DCTL_THRD_EN);
}
/* Enable threshold detection */
SET_BIT(NPCX_THRCTL(threshold_idx), NPCX_THRCTL_THEN);
}
/**
* ADC interrupt handler
*
* @param none
* @return none
* @notes Only handle SW-triggered conversion in npcx chip
*/
void adc_interrupt(void)
{
int i;
if (IS_BIT_SET(NPCX_ADCSTS, NPCX_ADCSTS_EOCEV)) {
/* Disable End-of-Conversion Interrupt */
CLEAR_BIT(NPCX_ADCCNF, NPCX_ADCCNF_INTECEN);
/* Stop conversion for single-shot mode */
if (!repetitive_enabled)
SET_BIT(NPCX_ADCCNF, NPCX_ADCCNF_STOP);
/* Clear End-of-Conversion Event status */
SET_BIT(NPCX_ADCSTS, NPCX_ADCSTS_EOCEV);
/* Wake up the task which was waiting for the interrupt */
if (task_waiting != TASK_ID_INVALID)
task_set_event(task_waiting, TASK_EVENT_ADC_DONE, 0);
}
for (i = NPCX_THRCTS_THR1_STS; i <= NPCX_THRCTS_THR3_STS; i++) {
if (IS_BIT_SET(NPCX_THRCTS, i)) {
/* Clear threshold status */
SET_BIT(NPCX_THRCTS, i);
if (adc_thresh_irqs[i])
adc_thresh_irqs[i]();
}
}
}
DECLARE_IRQ(NPCX_IRQ_ADC, adc_interrupt, 4);
/**
* ADC initial.
*
* @param none
* @return none
*/
static void adc_init(void)
{
/* Configure pins from GPIOs to ADCs */
gpio_config_module(MODULE_ADC, 1);
/* Enable ADC clock (bit4 mask = 0x10) */
clock_enable_peripheral(CGC_OFFSET_ADC, CGC_ADC_MASK,
CGC_MODE_RUN | CGC_MODE_SLEEP);
/* Set Core Clock Division Factor in order to obtain the ADC clock */
adc_freq_changed();
/* Set regular speed */
SET_FIELD(NPCX_ATCTL, NPCX_ATCTL_DLY_FIELD, (ADC_REGULAR_DLY - 1));
/* Set the other ADC settings */
NPCX_ADCCNF2 = ADC_REGULAR_ADCCNF2;
NPCX_GENDLY = ADC_REGULAR_GENDLY;
NPCX_MEAST = ADC_REGULAR_MEAST;
task_waiting = TASK_ID_INVALID;
/* Enable IRQs */
task_enable_irq(NPCX_IRQ_ADC);
}
DECLARE_HOOK(HOOK_INIT, adc_init, HOOK_PRIO_INIT_ADC);
|