1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
/* Copyright 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "adc.h"
#include "clock.h"
#include "common.h"
#include "console.h"
#include "dma.h"
#include "hooks.h"
#include "registers.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#define ADC_SINGLE_READ_TIMEOUT 3000 /* 3 ms */
#define SMPR1_EXPAND(v) \
((v) | ((v) << 3) | ((v) << 6) | ((v) << 9) | ((v) << 12) | \
((v) << 15) | ((v) << 18) | ((v) << 21))
#define SMPR2_EXPAND(v) (SMPR1_EXPAND(v) | ((v) << 24) | ((v) << 27))
/* Default ADC sample time = 13.5 cycles */
#ifndef CONFIG_ADC_SAMPLE_TIME
#define CONFIG_ADC_SAMPLE_TIME 2
#endif
struct mutex adc_lock;
static int watchdog_ain_id;
static inline void adc_set_channel(int sample_id, int channel)
{
uint32_t mask, val;
volatile uint32_t *sqr_reg;
if (sample_id < 6) {
mask = 0x1f << (sample_id * 5);
val = channel << (sample_id * 5);
sqr_reg = &STM32_ADC_SQR3;
} else if (sample_id < 12) {
mask = 0x1f << ((sample_id - 6) * 5);
val = channel << ((sample_id - 6) * 5);
sqr_reg = &STM32_ADC_SQR2;
} else {
mask = 0x1f << ((sample_id - 12) * 5);
val = channel << ((sample_id - 12) * 5);
sqr_reg = &STM32_ADC_SQR1;
}
*sqr_reg = (*sqr_reg & ~mask) | val;
}
static void adc_configure(int ain_id)
{
/* Set ADC channel */
adc_set_channel(0, ain_id);
/* Disable DMA */
STM32_ADC_CR2 &= ~BIT(8);
/* Disable scan mode */
STM32_ADC_CR1 &= ~BIT(8);
}
static void __attribute__((unused)) adc_configure_all(void)
{
int i;
/* Set ADC channels */
STM32_ADC_SQR1 = (ADC_CH_COUNT - 1) << 20;
for (i = 0; i < ADC_CH_COUNT; ++i)
adc_set_channel(i, adc_channels[i].channel);
/* Enable DMA */
STM32_ADC_CR2 |= BIT(8);
/* Enable scan mode */
STM32_ADC_CR1 |= BIT(8);
}
static inline int adc_powered(void)
{
return STM32_ADC_CR2 & BIT(0);
}
static inline int adc_conversion_ended(void)
{
return STM32_ADC_SR & BIT(1);
}
static int adc_watchdog_enabled(void)
{
return STM32_ADC_CR1 & BIT(23);
}
static int adc_enable_watchdog_no_lock(void)
{
/* Fail if watchdog already enabled */
if (adc_watchdog_enabled())
return EC_ERROR_UNKNOWN;
/* Set channel */
STM32_ADC_SQR3 = watchdog_ain_id;
STM32_ADC_SQR1 = 0;
STM32_ADC_CR1 = (STM32_ADC_CR1 & ~0x1f) | watchdog_ain_id;
/* Clear interrupt bit */
STM32_ADC_SR &= ~0x1;
/* AWDSGL=1, SCAN=1, AWDIE=1, AWDEN=1 */
STM32_ADC_CR1 |= BIT(9) | BIT(8) | BIT(6) | BIT(23);
/* Disable DMA */
STM32_ADC_CR2 &= ~BIT(8);
/* CONT=1 */
STM32_ADC_CR2 |= BIT(1);
/* Start conversion */
STM32_ADC_CR2 |= BIT(0);
return EC_SUCCESS;
}
int adc_enable_watchdog(int ain_id, int high, int low)
{
int ret;
if (!adc_powered())
return EC_ERROR_UNKNOWN;
mutex_lock(&adc_lock);
watchdog_ain_id = ain_id;
/* Set thresholds */
STM32_ADC_HTR = high & 0xfff;
STM32_ADC_LTR = low & 0xfff;
ret = adc_enable_watchdog_no_lock();
mutex_unlock(&adc_lock);
return ret;
}
static int adc_disable_watchdog_no_lock(void)
{
/* Fail if watchdog not running */
if (!adc_watchdog_enabled())
return EC_ERROR_UNKNOWN;
/* AWDEN=0, AWDIE=0 */
STM32_ADC_CR1 &= ~BIT(23) & ~BIT(6);
/* CONT=0 */
STM32_ADC_CR2 &= ~BIT(1);
return EC_SUCCESS;
}
int adc_disable_watchdog(void)
{
int ret;
if (!adc_powered())
return EC_ERROR_UNKNOWN;
mutex_lock(&adc_lock);
ret = adc_disable_watchdog_no_lock();
mutex_unlock(&adc_lock);
return ret;
}
int adc_read_channel(enum adc_channel ch)
{
const struct adc_t *adc = adc_channels + ch;
int value;
int restore_watchdog = 0;
timestamp_t deadline;
if (!adc_powered())
return EC_ERROR_UNKNOWN;
mutex_lock(&adc_lock);
if (adc_watchdog_enabled()) {
restore_watchdog = 1;
adc_disable_watchdog_no_lock();
}
adc_configure(adc->channel);
/* Clear EOC bit */
STM32_ADC_SR &= ~BIT(1);
/* Start conversion (Note: For now only confirmed on F4) */
#if defined(CHIP_FAMILY_STM32F4)
STM32_ADC_CR2 |= STM32_ADC_CR2_ADON | STM32_ADC_CR2_SWSTART;
#else
STM32_ADC_CR2 |= STM32_ADC_CR2_ADON;
#endif
/* Wait for EOC bit set */
deadline.val = get_time().val + ADC_SINGLE_READ_TIMEOUT;
value = ADC_READ_ERROR;
do {
if (adc_conversion_ended()) {
value = STM32_ADC_DR & ADC_READ_MAX;
break;
}
} while (!timestamp_expired(deadline, NULL));
if (restore_watchdog)
adc_enable_watchdog_no_lock();
mutex_unlock(&adc_lock);
return (value == ADC_READ_ERROR) ?
ADC_READ_ERROR :
value * adc->factor_mul / adc->factor_div + adc->shift;
}
static void adc_init(void)
{
/*
* Enable ADC clock.
* APB2 clock is 16MHz. ADC clock prescaler is /2.
* So the ADC clock is 8MHz.
*/
clock_enable_module(MODULE_ADC, 1);
/*
* ADC clock is divided with respect to AHB, so no delay needed
* here. If ADC clock is the same as AHB, a read on ADC
* register is needed here.
*/
if (!adc_powered()) {
/* Power on ADC module */
STM32_ADC_CR2 |= STM32_ADC_CR2_ADON;
/* Reset calibration */
STM32_ADC_CR2 |= STM32_ADC_CR2_RSTCAL;
while (STM32_ADC_CR2 & STM32_ADC_CR2_RSTCAL)
;
/* A/D Calibrate */
STM32_ADC_CR2 |= STM32_ADC_CR2_CAL;
while (STM32_ADC_CR2 & STM32_ADC_CR2_CAL)
;
}
/* Set right alignment */
STM32_ADC_CR2 &= ~STM32_ADC_CR2_ALIGN;
/* Set sample time of all channels */
STM32_ADC_SMPR1 = SMPR1_EXPAND(CONFIG_ADC_SAMPLE_TIME);
STM32_ADC_SMPR2 = SMPR2_EXPAND(CONFIG_ADC_SAMPLE_TIME);
}
DECLARE_HOOK(HOOK_INIT, adc_init, HOOK_PRIO_INIT_ADC);
|