summaryrefslogtreecommitdiff
path: root/chip/stm32/clock-stm32f4.c
blob: 15cf8a45e283171c79ef1214fd8d2e59c2b4142c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/* Copyright 2016 The ChromiumOS Authors
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* Clocks and power management settings */

#include "builtin/assert.h"
#include "chipset.h"
#include "clock-f.h"
#include "clock.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "hooks.h"
#include "hwtimer.h"
#include "registers.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "util.h"

/* Console output macros */
#define CPUTS(outstr) cputs(CC_CLOCK, outstr)
#define CPRINTS(format, args...) cprints(CC_CLOCK, format, ##args)

enum clock_osc {
	OSC_HSI = 0, /* High-speed internal oscillator */
	OSC_HSE, /* High-speed external oscillator */
	OSC_PLL, /* PLL */
};

/*
 * NOTE: Sweetberry requires MCO2 <- HSE @ 24MHz
 * MCO outputs are selected here but are not changeable later.
 * A CONFIG may be needed if other boards have different MCO
 * requirements.
 */
#define RCC_CFGR_MCO_CONFIG             \
	((2 << 30) | /* MCO2 <- HSE  */ \
	 (0 << 27) | /* MCO2 div / 4 */ \
	 (6 << 24) | /* MCO1 div / 4 */ \
	 (3 << 21)) /* MCO1 <- PLL  */

#ifdef CONFIG_STM32_CLOCK_HSE_HZ
/* RTC clock must 1 Mhz when derived from HSE */
#define RTC_DIV DIV_ROUND_NEAREST(CONFIG_STM32_CLOCK_HSE_HZ, STM32F4_RTC_REQ)
#else /* !CONFIG_STM32_CLOCK_HSE_HZ */
/* RTC clock not derived from HSE, turn it off */
#define RTC_DIV 0
#endif /* CONFIG_STM32_CLOCK_HSE_HZ */

/* Bus clocks dividers depending on the configuration */
/*
 * max speed configuration with the PLL ON
 * as defined in the registers file.
 * For STM32F446: max 45 MHz
 * For STM32F412: max AHB 100 MHz / APB2 100 Mhz / APB1 50 Mhz
 */
#define RCC_CFGR_DIVIDERS_WITH_PLL                                     \
	(RCC_CFGR_MCO_CONFIG | CFGR_RTCPRE(RTC_DIV) |                  \
	 CFGR_PPRE2(STM32F4_APB2_PRE) | CFGR_PPRE1(STM32F4_APB1_PRE) | \
	 CFGR_HPRE(STM32F4_AHB_PRE))
/*
 * lower power configuration without the PLL
 * the frequency will be low (8-24Mhz), we don't want dividers to the
 * peripheral clocks, put /1 everywhere.
 */
#define RCC_CFGR_DIVIDERS_NO_PLL                                \
	(RCC_CFGR_MCO_CONFIG | CFGR_RTCPRE(0) | CFGR_PPRE2(0) | \
	 CFGR_PPRE1(0) | CFGR_HPRE(0))

/* PLL output frequency */
#define STM32F4_PLL_CLOCK (STM32F4_VCO_CLOCK / STM32F4_PLLP_DIV)

/* current clock settings (PLL is initialized at startup) */
static int current_osc = OSC_PLL;
static int current_io_freq = STM32F4_IO_CLOCK;
static int current_timer_freq = STM32F4_TIMER_CLOCK;

/* the EC code expects to get the USART/I2C clock frequency here (APB clock) */
int clock_get_freq(void)
{
	return current_io_freq;
}

int clock_get_timer_freq(void)
{
	return current_timer_freq;
}

static void clock_enable_osc(enum clock_osc osc, bool enabled)
{
	uint32_t ready;
	uint32_t on;

	switch (osc) {
	case OSC_HSI:
		ready = STM32_RCC_CR_HSIRDY;
		on = STM32_RCC_CR_HSION;
		break;
	case OSC_HSE:
		ready = STM32_RCC_CR_HSERDY;
		on = STM32_RCC_CR_HSEON;
		break;
	case OSC_PLL:
		ready = STM32_RCC_CR_PLLRDY;
		on = STM32_RCC_CR_PLLON;
		break;
	default:
		ASSERT(0);
		return;
	}

	/* Turn off the oscillator, but don't wait for shutdown */
	if (!enabled) {
		STM32_RCC_CR &= ~on;
		return;
	}

	/* Turn on the oscillator if not already on */
	wait_for_ready(&STM32_RCC_CR, on, ready);
}

static void clock_switch_osc(enum clock_osc osc)
{
	uint32_t sw;
	uint32_t sws;

	switch (osc) {
	case OSC_HSI:
		sw = STM32_RCC_CFGR_SW_HSI | RCC_CFGR_DIVIDERS_NO_PLL;
		sws = STM32_RCC_CFGR_SWS_HSI;
		break;
	case OSC_HSE:
		sw = STM32_RCC_CFGR_SW_HSE | RCC_CFGR_DIVIDERS_NO_PLL;
		sws = STM32_RCC_CFGR_SWS_HSE;
		break;
	case OSC_PLL:
		sw = STM32_RCC_CFGR_SW_PLL | RCC_CFGR_DIVIDERS_WITH_PLL;
		sws = STM32_RCC_CFGR_SWS_PLL;
		break;
	default:
		return;
	}

	STM32_RCC_CFGR = sw;
	while ((STM32_RCC_CFGR & STM32_RCC_CFGR_SWS_MASK) != sws)
		;
}

void clock_set_osc(enum clock_osc osc)
{
	volatile uint32_t unused __attribute__((unused));

	if (osc == current_osc)
		return;

	hook_notify(HOOK_PRE_FREQ_CHANGE);

	switch (osc) {
	default:
	case OSC_HSI:
		/* new clock settings: no dividers */
		current_io_freq = STM32F4_HSI_CLOCK;
		current_timer_freq = STM32F4_HSI_CLOCK;
		/* Switch to HSI */
		clock_switch_osc(OSC_HSI);
		/* optimized flash latency settings for <30Mhz clock (0-WS) */
		STM32_FLASH_ACR =
			(STM32_FLASH_ACR & ~STM32_FLASH_ACR_LAT_MASK) |
			STM32_FLASH_ACR_LATENCY_SLOW;
		/* read-back the latency as advised by the Reference Manual */
		unused = STM32_FLASH_ACR;
		/* Turn off the PLL1 to save power */
		clock_enable_osc(OSC_PLL, false);
		break;

#ifdef CONFIG_STM32_CLOCK_HSE_HZ
	case OSC_HSE:
		/* new clock settings: no dividers */
		current_io_freq = CONFIG_STM32_CLOCK_HSE_HZ;
		current_timer_freq = CONFIG_STM32_CLOCK_HSE_HZ;
		/* Switch to HSE */
		clock_switch_osc(OSC_HSE);
		/* optimized flash latency settings for <30Mhz clock (0-WS) */
		STM32_FLASH_ACR =
			(STM32_FLASH_ACR & ~STM32_FLASH_ACR_LAT_MASK) |
			STM32_FLASH_ACR_LATENCY_SLOW;
		/* read-back the latency as advised by the Reference Manual */
		unused = STM32_FLASH_ACR;
		/* Turn off the PLL1 to save power */
		clock_enable_osc(OSC_PLL, false);
		break;
#endif /* CONFIG_STM32_CLOCK_HSE_HZ */

	case OSC_PLL:
		/* new clock settings */
		current_io_freq = STM32F4_IO_CLOCK;
		current_timer_freq = STM32F4_TIMER_CLOCK;
		/* turn on PLL and wait until it's ready */
		clock_enable_osc(OSC_PLL, true);
		/*
		 * Increase flash latency before transition the clock
		 * Use the minimum Wait States value optimized for the platform.
		 */
		STM32_FLASH_ACR =
			(STM32_FLASH_ACR & ~STM32_FLASH_ACR_LAT_MASK) |
			STM32_FLASH_ACR_LATENCY;
		/* read-back the latency as advised by the Reference Manual */
		unused = STM32_FLASH_ACR;
		/* Switch to PLL */
		clock_switch_osc(OSC_PLL);

		break;
	}

	current_osc = osc;
	hook_notify(HOOK_FREQ_CHANGE);
}

static void clock_pll_configure(void)
{
#ifdef CONFIG_STM32_CLOCK_HSE_HZ
	int srcclock = CONFIG_STM32_CLOCK_HSE_HZ;
#else
	int srcclock = STM32F4_HSI_CLOCK;
#endif
	int plldiv, pllinputclock;
	int pllmult, vcoclock;
	int systemclock;
	int usbdiv;
	int i2sdiv;

	/* PLL input must be between 1-2MHz, near 2 */
	/* Valid values 2-63 */
	plldiv = (srcclock + STM32F4_PLL_REQ - 1) / STM32F4_PLL_REQ;
	pllinputclock = srcclock / plldiv;

	/* PLL output clock: Must be 100-432MHz */
	pllmult = (STM32F4_VCO_CLOCK + (pllinputclock / 2)) / pllinputclock;
	vcoclock = pllinputclock * pllmult;

	/* CPU/System clock */
	systemclock = vcoclock / STM32F4_PLLP_DIV;
	/* USB clock = 48MHz exactly */
	usbdiv = (vcoclock + (STM32F4_USB_REQ / 2)) / STM32F4_USB_REQ;
	assert(vcoclock / usbdiv == STM32F4_USB_REQ);

	/* SYSTEM/I2S: same system clock */
	i2sdiv = (vcoclock + (systemclock / 2)) / systemclock;

	/* Set up PLL */
	STM32_RCC_PLLCFGR = PLLCFGR_PLLM(plldiv) | PLLCFGR_PLLN(pllmult) |
			    PLLCFGR_PLLP(STM32F4_PLLP_DIV / 2 - 1) |
#if defined(CONFIG_STM32_CLOCK_HSE_HZ)
			    PLLCFGR_PLLSRC_HSE |
#else
			    PLLCFGR_PLLSRC_HSI |
#endif
			    PLLCFGR_PLLQ(usbdiv) | PLLCFGR_PLLR(i2sdiv);
}

void low_power_init(void);

void config_hispeed_clock(void)
{
#ifdef CONFIG_STM32_CLOCK_HSE_HZ
	/* Ensure that HSE is ON */
	clock_enable_osc(OSC_HSE, true);
#endif

	/* Put the PLL settings, they are never changing */
	clock_pll_configure();
	clock_enable_osc(OSC_PLL, true);

	/* Switch SYSCLK to PLL, setup bus prescalers. */
	clock_switch_osc(OSC_PLL);

#ifdef CONFIG_LOW_POWER_IDLE
	low_power_init();
#endif
}

void clock_wait_bus_cycles(enum bus_type bus, uint32_t cycles)
{
	volatile uint32_t unused __attribute__((unused));

	if (bus == BUS_AHB) {
		while (cycles--)
			unused = STM32_DMA_GET_ISR(0);
	} else { /* APB */
		while (cycles--)
			unused = STM32_USART_BRR(STM32_USART1_BASE);
	}
}

void clock_enable_module(enum module_id module, int enable)
{
	if (module == MODULE_USB) {
		if (enable) {
			STM32_RCC_AHB2ENR |= STM32_RCC_AHB2ENR_OTGFSEN;
			STM32_RCC_AHB1ENR |= STM32_RCC_AHB1ENR_OTGHSEN |
					     STM32_RCC_AHB1ENR_OTGHSULPIEN;
		} else {
			STM32_RCC_AHB2ENR &= ~STM32_RCC_AHB2ENR_OTGFSEN;
			STM32_RCC_AHB1ENR &= ~STM32_RCC_AHB1ENR_OTGHSEN &
					     ~STM32_RCC_AHB1ENR_OTGHSULPIEN;
		}
		return;
	} else if (module == MODULE_I2C) {
		if (enable) {
			/* Enable clocks to I2C modules if necessary */
			STM32_RCC_APB1ENR |=
				STM32_RCC_I2C1EN | STM32_RCC_I2C2EN |
				STM32_RCC_I2C3EN | STM32_RCC_FMPI2C4EN;
			STM32_RCC_DCKCFGR2 =
				(STM32_RCC_DCKCFGR2 &
				 ~DCKCFGR2_FMPI2C1SEL_MASK) |
				DCKCFGR2_FMPI2C1SEL(FMPI2C1SEL_APB);
		} else {
			STM32_RCC_APB1ENR &=
				~(STM32_RCC_I2C1EN | STM32_RCC_I2C2EN |
				  STM32_RCC_I2C3EN | STM32_RCC_FMPI2C4EN);
		}
		return;
	} else if (module == MODULE_ADC) {
		if (enable)
			STM32_RCC_APB2ENR |= STM32_RCC_APB2ENR_ADC1EN;
		else
			STM32_RCC_APB2ENR &= ~STM32_RCC_APB2ENR_ADC1EN;
		return;
	}
}

/* Real Time Clock (RTC) */

#ifdef CONFIG_STM32_CLOCK_HSE_HZ
#define RTC_PREDIV_A 39
#define RTC_FREQ ((STM32F4_RTC_REQ) / (RTC_PREDIV_A + 1)) /* Hz */
#else /* from LSI clock */
#define RTC_PREDIV_A 1
#define RTC_FREQ (STM32F4_LSI_CLOCK / (RTC_PREDIV_A + 1)) /* Hz */
#endif
#define RTC_PREDIV_S (RTC_FREQ - 1)
/*
 * Scaling factor to ensure that the intermediate values computed from/to the
 * RTC frequency are fitting in a 32-bit integer.
 */
#define SCALING 1000

int32_t rtcss_to_us(uint32_t rtcss)
{
	return ((RTC_PREDIV_S - rtcss) * (SECOND / SCALING) /
		(RTC_FREQ / SCALING));
}

uint32_t us_to_rtcss(int32_t us)
{
	return (RTC_PREDIV_S -
		(us * (RTC_FREQ / SCALING) / (SECOND / SCALING)));
}

void rtc_init(void)
{
	/* Setup RTC Clock input */
#ifdef CONFIG_STM32_CLOCK_HSE_HZ
	/* RTC clocked from the HSE */
	STM32_RCC_BDCR = STM32_RCC_BDCR_RTCEN | BDCR_RTCSEL(BDCR_SRC_HSE);
#else
	/* RTC clocked from the LSI, ensure first it is ON */
	wait_for_ready(&(STM32_RCC_CSR), STM32_RCC_CSR_LSION,
		       STM32_RCC_CSR_LSIRDY);

	STM32_RCC_BDCR = STM32_RCC_BDCR_RTCEN | BDCR_RTCSEL(BDCR_SRC_LSI);
#endif

	rtc_unlock_regs();

	/* Enter RTC initialize mode */
	STM32_RTC_ISR |= STM32_RTC_ISR_INIT;
	while (!(STM32_RTC_ISR & STM32_RTC_ISR_INITF))
		;

	/* Set clock prescalars: Needs two separate writes. */
	STM32_RTC_PRER = (STM32_RTC_PRER & ~STM32_RTC_PRER_S_MASK) |
			 RTC_PREDIV_S;
	STM32_RTC_PRER = (STM32_RTC_PRER & ~STM32_RTC_PRER_A_MASK) |
			 (RTC_PREDIV_A << 16);

	/* Start RTC timer */
	STM32_RTC_ISR &= ~STM32_RTC_ISR_INIT;
	while (STM32_RTC_ISR & STM32_RTC_ISR_INITF)
		;

	/* Enable RTC alarm interrupt */
	STM32_RTC_CR |= STM32_RTC_CR_ALRAIE | STM32_RTC_CR_BYPSHAD;
	STM32_EXTI_RTSR |= EXTI_RTC_ALR_EVENT;
	task_enable_irq(STM32_IRQ_RTC_ALARM);

	rtc_lock_regs();
}

#if defined(CONFIG_CMD_RTC) || defined(CONFIG_HOSTCMD_RTC)
void rtc_set(uint32_t sec)
{
	struct rtc_time_reg rtc;

	sec_to_rtc(sec, &rtc);
	rtc_unlock_regs();

	/* Disable alarm */
	STM32_RTC_CR &= ~STM32_RTC_CR_ALRAE;

	/* Enter RTC initialize mode */
	STM32_RTC_ISR |= STM32_RTC_ISR_INIT;
	while (!(STM32_RTC_ISR & STM32_RTC_ISR_INITF))
		;

	/* Set clock prescalars */
	STM32_RTC_PRER = (RTC_PREDIV_A << 16) | RTC_PREDIV_S;

	STM32_RTC_TR = rtc.rtc_tr;
	STM32_RTC_DR = rtc.rtc_dr;
	/* Start RTC timer */
	STM32_RTC_ISR &= ~STM32_RTC_ISR_INIT;

	rtc_lock_regs();
}
#endif

#ifdef CONFIG_LOW_POWER_IDLE
/* Low power idle statistics */
static int idle_sleep_cnt;
static int idle_dsleep_cnt;
static uint64_t idle_dsleep_time_us;
static int idle_sleep_prevented_cnt;
static int dsleep_recovery_margin_us = 1000000;

/* STOP_MODE_LATENCY: delay to wake up from STOP mode with main regulator off */
#define STOP_MODE_LATENCY 50 /* us */
/* PLL_LOCK_LATENCY: delay to switch from HSI to PLL */
#define PLL_LOCK_LATENCY 150 /* us */

void low_power_init(void)
{
	/* Turn off the main regulator during stop mode */
	STM32_PWR_CR |= STM32_PWR_CR_LPSDSR /* aka LPDS */;
}

void clock_refresh_console_in_use(void)
{
}

static bool timer_interrupt_pending(void)
{
	return task_is_irq_pending(IRQ_TIM(TIM_CLOCK32));
}

void __idle(void)
{
	timestamp_t t0;
	uint32_t rtc_diff;
	int next_delay, margin_us;
	struct rtc_time_reg rtc0, rtc1, rtc_sleep;

	while (1) {
		interrupt_disable();

		/*
		 * Get timestamp with interrupts disabled.
		 * This value is used as a base to calculate timestamp after
		 * wake from deep sleep. In combination with next_delay it gives
		 * information how long the CPU can sleep. The timestamp can
		 * point to the previous "epoch" when timer overflowed after
		 * interrupts were disabled, since clksrc_high (which keeps
		 * higher 32 bits of the timestamp) will not be updated.
		 */
		rtc_read(&rtc0);
		t0 = get_time();

		/*
		 * Get time to next event.
		 * After disabling interrupts, event timestamp
		 * (__hw_clock_event_get()) is frozen, because
		 * process_timers(), responsible for updating the
		 * next event value with __hw_clock_event_set(),
		 * can't be called. There is a risk that timer overflow
		 * occurred after interrupts were disabled and obtained
		 * event timestamp points to previous "epoch". We will
		 * check that later.
		 */
		next_delay = __hw_clock_event_get() - t0.le.lo;

		/*
		 * Repeat idle enter procedure when timer interrupt is pending
		 * (eg. overflow occurred after disabling interrupts). To work
		 * properly, this code assumes that timer interrupt is enabled
		 * in NVIC and interrupt is generated on timer overflow.
		 */
		if (timer_interrupt_pending()) {
			idle_sleep_prevented_cnt++;

			/* Enable interrupts to handle detected overflow. */
			interrupt_enable();

			/* Repeat idle enter procedure. */
			continue;
		}

		if (DEEP_SLEEP_ALLOWED &&
		    (next_delay > (STOP_MODE_LATENCY + PLL_LOCK_LATENCY +
				   SET_RTC_MATCH_DELAY))) {
			/*
			 * Sleep time MUST be smaller than watchdog period.
			 * Otherwise watchdog will wake us from deep sleep
			 * which is not what we want. Please note that this
			 * assert won't fire if we are already part way through
			 * the watchdog period.
			 */
			ASSERT(next_delay < CONFIG_WATCHDOG_PERIOD_MS * MSEC);

			/* Deep-sleep in STOP mode */
			idle_dsleep_cnt++;

			/*
			 * TODO(b/174337385) no support for wake-up on USART
			 * uart_enable_wakeup(1);
			 */

			/* Set deep sleep bit */
			CPU_SCB_SYSCTRL |= 0x4;

			set_rtc_alarm(0,
				      next_delay - STOP_MODE_LATENCY -
					      PLL_LOCK_LATENCY,
				      &rtc_sleep, 0);

			/* Switch to HSI */
			clock_switch_osc(OSC_HSI);
			/* Turn off the PLL1 to save power */
			clock_enable_osc(OSC_PLL, false);

			/* ensure outstanding memory transactions complete */
			asm volatile("dsb");

			cpu_enter_suspend_mode();

			CPU_SCB_SYSCTRL &= ~0x4;

			/* turn on PLL and wait until it's ready */
			clock_enable_osc(OSC_PLL, true);
			/* Switch to PLL */
			clock_switch_osc(OSC_PLL);

			/*uart_enable_wakeup(0);*/

			/* Fast forward timer according to RTC counter */
			reset_rtc_alarm(&rtc1);
			rtc_diff = get_rtc_diff(&rtc0, &rtc1);
			t0.val = t0.val + rtc_diff;
			force_time(t0);

			/* Record time spent in deep sleep. */
			idle_dsleep_time_us += get_rtc_diff(&rtc_sleep, &rtc1);

			/* Calculate how close we were to missing deadline */
			margin_us = next_delay - rtc_diff;
			if (margin_us < 0)
				/* Use CPUTS to save stack space */
				CPUTS("Idle overslept!\n");

			/* Record the closest to missing a deadline. */
			if (margin_us < dsleep_recovery_margin_us)
				dsleep_recovery_margin_us = margin_us;
		} else {
			idle_sleep_cnt++;

			/* Normal idle : only CPU clock stopped */
			cpu_enter_suspend_mode();
		}
		interrupt_enable();
	}
}

/* Print low power idle statistics. */
static int command_idle_stats(int argc, const char **argv)
{
	timestamp_t ts = get_time();

	ccprintf("Num idle calls that sleep:           %d\n", idle_sleep_cnt);
	ccprintf("Num idle calls that deep-sleep:      %d\n", idle_dsleep_cnt);
	ccprintf("Time spent in deep-sleep:            %.6llds\n",
		 idle_dsleep_time_us);
	ccprintf("Num of prevented sleep:              %d\n",
		 idle_sleep_prevented_cnt);
	ccprintf("Total time on:                       %.6llds\n", ts.val);
	ccprintf("Deep-sleep closest to wake deadline: %dus\n",
		 dsleep_recovery_margin_us);

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(idlestats, command_idle_stats, "",
			"Print last idle stats");
#endif /* CONFIG_LOW_POWER_IDLE */