1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
/* Copyright 2020 The ChromiumOS Authors
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gyro_cal.h"
#include "string.h"
#include <stdbool.h>
/*
* Maximum gyro bias correction (should be set based on expected max bias
* of the given sensor). [rad/sec]
*/
#define MAX_GYRO_BIAS FLOAT_TO_FP(0.2f)
static void device_stillness_check(struct gyro_cal *gyro_cal,
uint32_t sample_time_us);
static void compute_gyro_cal(struct gyro_cal *gyro_cal,
uint32_t calibration_time_us);
static void check_window(struct gyro_cal *gyro_cal, uint32_t sample_time_us);
/** Data tracker command enumeration. */
enum gyro_cal_tracker_command {
/** Resets the local data used for data tracking. */
DO_RESET = 0,
/** Updates the local tracking data. */
DO_UPDATE_DATA,
/** Stores intermediate results for later recall. */
DO_STORE_DATA,
/** Computes and provides the results of the gate function. */
DO_EVALUATE
};
/**
* Reset the gyro_cal's temperature statistics.
*
* @param gyro_cal Pointer to the gyro_cal data structure.
*/
static void gyro_temperature_stats_tracker_reset(struct gyro_cal *gyro_cal);
/**
* Updates the temperature min/max and mean during the stillness period.
*
* @param gyro_cal Pointer to the gyro_cal data structure.
* @param temperature_kelvin New temperature sample to include.
*/
static void gyro_temperature_stats_tracker_update(struct gyro_cal *gyro_cal,
int temperature_kelvin);
/**
* Store the tracker data to be used for calculation.
*
* @param gyro_cal Pointer to the gyro_cal data structure.
*/
static void gyro_temperature_stats_tracker_store(struct gyro_cal *gyro_cal);
/**
* Compute whether or not the temperature values are in range.
*
* @param gyro_cal Pointer to the gyro_cal data structure.
* @return 'true' if the min and max temperature values exceed the
* range set by 'temperature_delta_limit_kelvin'.
*/
static bool gyro_temperature_stats_tracker_eval(struct gyro_cal *gyro_cal);
/**
* Tracks the minimum and maximum gyroscope stillness window means.
* Returns
*
* @param gyro_cal Pointer to the gyro_cal data structure.
* @param do_this Command enumerator that controls function behavior.
*/
static void gyro_still_mean_tracker_reset(struct gyro_cal *gyro_cal);
/**
* Compute the min/max window mean values according to 'window_mean_tracker'.
*
* @param gyro_cal Pointer to the gyro_cal data structure.
*/
static void gyro_still_mean_tracker_update(struct gyro_cal *gyro_cal);
/**
* Store the most recent "stillness" mean data to the gyro_cal data structure.
*
* @param gyro_cal Pointer to the gyro_cal data structure.
*/
static void gyro_still_mean_tracker_store(struct gyro_cal *gyro_cal);
/**
* Compute whether or not the gyroscope window range is within the valid range.
*
* @param gyro_cal Pointer to the gyro_cal data structure.
* @return 'true' when the difference between gyroscope min and max
* window means are outside the range set by
* 'stillness_mean_delta_limit'.
*/
static bool gyro_still_mean_tracker_eval(struct gyro_cal *gyro_cal);
void init_gyro_cal(struct gyro_cal *gyro_cal)
{
gyro_still_mean_tracker_reset(gyro_cal);
gyro_temperature_stats_tracker_reset(gyro_cal);
}
void gyro_cal_get_bias(struct gyro_cal *gyro_cal, fpv3_t bias,
int *temperature_kelvin, uint32_t *calibration_time_us)
{
bias[X] = gyro_cal->bias_x;
bias[Y] = gyro_cal->bias_y;
bias[Z] = gyro_cal->bias_z;
*calibration_time_us = gyro_cal->calibration_time_us;
*temperature_kelvin = gyro_cal->bias_temperature_kelvin;
}
void gyro_cal_set_bias(struct gyro_cal *gyro_cal, fpv3_t bias,
int temperature_kelvin, uint32_t calibration_time_us)
{
gyro_cal->bias_x = bias[X];
gyro_cal->bias_y = bias[Y];
gyro_cal->bias_z = bias[Z];
gyro_cal->calibration_time_us = calibration_time_us;
gyro_cal->bias_temperature_kelvin = temperature_kelvin;
}
void gyro_cal_remove_bias(struct gyro_cal *gyro_cal, fpv3_t in, fpv3_t out)
{
if (gyro_cal->gyro_calibration_enable) {
out[X] = in[X] - gyro_cal->bias_x;
out[Y] = in[Y] - gyro_cal->bias_y;
out[Z] = in[Z] - gyro_cal->bias_z;
}
}
bool gyro_cal_new_bias_available(struct gyro_cal *gyro_cal)
{
bool new_gyro_cal_available = (gyro_cal->gyro_calibration_enable &&
gyro_cal->new_gyro_cal_available);
/* Clear the flag. */
gyro_cal->new_gyro_cal_available = false;
return new_gyro_cal_available;
}
void gyro_cal_update_gyro(struct gyro_cal *gyro_cal, uint32_t sample_time_us,
fp_t x, fp_t y, fp_t z, int temperature_kelvin)
{
/*
* Make sure that a valid window end-time is set, and start the window
* timer.
*/
if (gyro_cal->stillness_win_endtime_us <= 0) {
gyro_cal->stillness_win_endtime_us =
sample_time_us + gyro_cal->window_time_duration_us;
/* Start the window timer. */
gyro_cal->gyro_window_start_us = sample_time_us;
}
/* Update the temperature statistics. */
gyro_temperature_stats_tracker_update(gyro_cal, temperature_kelvin);
/* Pass gyro data to stillness detector */
gyro_still_det_update(&gyro_cal->gyro_stillness_detect,
gyro_cal->stillness_win_endtime_us,
sample_time_us, x, y, z);
/*
* Perform a device stillness check, set next window end-time, and
* possibly do a gyro bias calibration and stillness detector reset.
*/
device_stillness_check(gyro_cal, sample_time_us);
}
void gyro_cal_update_mag(struct gyro_cal *gyro_cal, uint32_t sample_time_us,
fp_t x, fp_t y, fp_t z)
{
/* Pass magnetometer data to stillness detector. */
gyro_still_det_update(&gyro_cal->mag_stillness_detect,
gyro_cal->stillness_win_endtime_us,
sample_time_us, x, y, z);
/* Received a magnetometer sample; incorporate it into detection. */
gyro_cal->using_mag_sensor = true;
/*
* Perform a device stillness check, set next window end-time, and
* possibly do a gyro bias calibration and stillness detector reset.
*/
device_stillness_check(gyro_cal, sample_time_us);
}
void gyro_cal_update_accel(struct gyro_cal *gyro_cal, uint32_t sample_time_us,
fp_t x, fp_t y, fp_t z)
{
/* Pass accelerometer data to stillnesss detector. */
gyro_still_det_update(&gyro_cal->accel_stillness_detect,
gyro_cal->stillness_win_endtime_us,
sample_time_us, x, y, z);
/*
* Perform a device stillness check, set next window end-time, and
* possibly do a gyro bias calibration and stillness detector reset.
*/
device_stillness_check(gyro_cal, sample_time_us);
}
/**
* Handle the case where the device is found to be still. This function should
* be called from device_stillness_check.
*
* @param gyro_cal Pointer to the gyroscope calibration struct.
*/
static void handle_device_is_still(struct gyro_cal *gyro_cal)
{
/*
* Device is "still" logic:
* If not previously still, then record the start time.
* If stillness period is too long, then do a calibration.
* Otherwise, continue collecting stillness data.
*/
bool stillness_duration_exceeded = false;
/*
* If device was not previously still, set new start timestamp.
*/
if (!gyro_cal->prev_still) {
/*
* Record the starting timestamp of the current stillness
* window. This enables the calculation of total duration of
* the stillness period.
*/
gyro_cal->start_still_time_us =
gyro_cal->gyro_stillness_detect.window_start_time;
}
/*
* Check to see if current stillness period exceeds the desired limit.
*/
stillness_duration_exceeded =
gyro_cal->gyro_stillness_detect.last_sample_time >=
(gyro_cal->start_still_time_us +
gyro_cal->max_still_duration_us);
/* Track the new stillness mean and temperature data. */
gyro_still_mean_tracker_store(gyro_cal);
gyro_temperature_stats_tracker_store(gyro_cal);
if (stillness_duration_exceeded) {
/*
* The current stillness has gone too long. Do a calibration
* with the current data and reset.
*/
/*
* Updates the gyro bias estimate with the current window data
* and resets the stats.
*/
gyro_still_det_reset(&gyro_cal->accel_stillness_detect,
/*reset_stats=*/true);
gyro_still_det_reset(&gyro_cal->gyro_stillness_detect,
/*reset_stats=*/true);
gyro_still_det_reset(&gyro_cal->mag_stillness_detect,
/*reset_stats=*/true);
/*
* Resets the local calculations because the stillness
* period is over.
*/
gyro_still_mean_tracker_reset(gyro_cal);
gyro_temperature_stats_tracker_reset(gyro_cal);
/* Computes a new gyro offset estimate. */
compute_gyro_cal(
gyro_cal,
gyro_cal->gyro_stillness_detect.last_sample_time);
/*
* Update stillness flag. Force the start of a new
* stillness period.
*/
gyro_cal->prev_still = false;
} else {
/* Continue collecting stillness data. */
/* Extend the stillness period. */
gyro_still_det_reset(&gyro_cal->accel_stillness_detect,
/*reset_stats=*/false);
gyro_still_det_reset(&gyro_cal->gyro_stillness_detect,
/*reset_stats=*/false);
gyro_still_det_reset(&gyro_cal->mag_stillness_detect,
/*reset_stats=*/false);
/* Update the stillness flag. */
gyro_cal->prev_still = true;
}
}
static void handle_device_not_still(struct gyro_cal *gyro_cal)
{
/* Device is NOT still; motion detected. */
/*
* If device was previously still and the total stillness
* duration is not "too short", then do a calibration with the
* data accumulated thus far.
*/
bool stillness_duration_too_short =
gyro_cal->gyro_stillness_detect.window_start_time <
(gyro_cal->start_still_time_us +
gyro_cal->min_still_duration_us);
if (gyro_cal->prev_still && !stillness_duration_too_short)
compute_gyro_cal(
gyro_cal,
gyro_cal->gyro_stillness_detect.window_start_time);
/* Reset the stillness detectors and the stats. */
gyro_still_det_reset(&gyro_cal->accel_stillness_detect,
/*reset_stats=*/true);
gyro_still_det_reset(&gyro_cal->gyro_stillness_detect,
/*reset_stats=*/true);
gyro_still_det_reset(&gyro_cal->mag_stillness_detect,
/*reset_stats=*/true);
/* Resets the temperature and sensor mean data. */
gyro_temperature_stats_tracker_reset(gyro_cal);
gyro_still_mean_tracker_reset(gyro_cal);
/* Update stillness flag. */
gyro_cal->prev_still = false;
}
void device_stillness_check(struct gyro_cal *gyro_cal, uint32_t sample_time_us)
{
bool min_max_temp_exceeded = false;
bool mean_not_stable = false;
bool device_is_still = false;
fp_t conf_not_rot = INT_TO_FP(0);
fp_t conf_not_accel = INT_TO_FP(0);
fp_t conf_still = INT_TO_FP(0);
/* Check the window timer. */
check_window(gyro_cal, sample_time_us);
/* Is there enough data to do a stillness calculation? */
if ((!gyro_cal->mag_stillness_detect.stillness_window_ready &&
gyro_cal->using_mag_sensor) ||
!gyro_cal->accel_stillness_detect.stillness_window_ready ||
!gyro_cal->gyro_stillness_detect.stillness_window_ready)
return; /* Not yet, wait for more data. */
/* Set the next window end-time for the stillness detectors. */
gyro_cal->stillness_win_endtime_us =
sample_time_us + gyro_cal->window_time_duration_us;
/* Update the confidence scores for all sensors. */
gyro_still_det_compute(&gyro_cal->accel_stillness_detect);
gyro_still_det_compute(&gyro_cal->gyro_stillness_detect);
if (gyro_cal->using_mag_sensor) {
gyro_still_det_compute(&gyro_cal->mag_stillness_detect);
} else {
/*
* Not using magnetometer, force stillness confidence to 100%.
*/
gyro_cal->mag_stillness_detect.stillness_confidence =
INT_TO_FP(1);
}
/* Updates the mean tracker data. */
gyro_still_mean_tracker_update(gyro_cal);
/*
* Determine motion confidence scores (rotation, accelerating, and
* stillness).
*/
conf_not_rot =
fp_mul(gyro_cal->gyro_stillness_detect.stillness_confidence,
gyro_cal->mag_stillness_detect.stillness_confidence);
conf_not_accel = gyro_cal->accel_stillness_detect.stillness_confidence;
conf_still = fp_mul(conf_not_rot, conf_not_accel);
/* Evaluate the mean and temperature gate functions. */
mean_not_stable = gyro_still_mean_tracker_eval(gyro_cal);
min_max_temp_exceeded = gyro_temperature_stats_tracker_eval(gyro_cal);
/* Determines if the device is currently still. */
device_is_still = (conf_still > gyro_cal->stillness_threshold) &&
!mean_not_stable && !min_max_temp_exceeded;
if (device_is_still)
handle_device_is_still(gyro_cal);
else
handle_device_not_still(gyro_cal);
/* Reset the window timer after we have processed data. */
gyro_cal->gyro_window_start_us = sample_time_us;
}
void compute_gyro_cal(struct gyro_cal *gyro_cal, uint32_t calibration_time_us)
{
/* Check to see if new calibration values is within acceptable range. */
if (!(gyro_cal->gyro_stillness_detect.prev_mean[X] < MAX_GYRO_BIAS &&
gyro_cal->gyro_stillness_detect.prev_mean[X] > -MAX_GYRO_BIAS &&
gyro_cal->gyro_stillness_detect.prev_mean[Y] < MAX_GYRO_BIAS &&
gyro_cal->gyro_stillness_detect.prev_mean[Y] > -MAX_GYRO_BIAS &&
gyro_cal->gyro_stillness_detect.prev_mean[Z] < MAX_GYRO_BIAS &&
gyro_cal->gyro_stillness_detect.prev_mean[Z] > -MAX_GYRO_BIAS))
/* Outside of range. Ignore, reset, and continue. */
return;
/* Record the new gyro bias offset calibration. */
gyro_cal->bias_x = gyro_cal->gyro_stillness_detect.prev_mean[X];
gyro_cal->bias_y = gyro_cal->gyro_stillness_detect.prev_mean[Y];
gyro_cal->bias_z = gyro_cal->gyro_stillness_detect.prev_mean[Z];
/*
* Store the calibration temperature (using the mean temperature over
* the "stillness" period).
*/
gyro_cal->bias_temperature_kelvin = gyro_cal->temperature_mean_kelvin;
/* Store the calibration time stamp. */
gyro_cal->calibration_time_us = calibration_time_us;
/* Record the final stillness confidence. */
gyro_cal->stillness_confidence = fp_mul(
gyro_cal->gyro_stillness_detect.prev_stillness_confidence,
gyro_cal->accel_stillness_detect.prev_stillness_confidence);
gyro_cal->stillness_confidence = fp_mul(
gyro_cal->stillness_confidence,
gyro_cal->mag_stillness_detect.prev_stillness_confidence);
/* Set flag to indicate a new gyro calibration value is available. */
gyro_cal->new_gyro_cal_available = true;
}
void check_window(struct gyro_cal *gyro_cal, uint32_t sample_time_us)
{
bool window_timeout;
/* Check for initialization of the window time (=0). */
if (gyro_cal->gyro_window_start_us <= 0)
return;
/*
* Checks for the following window timeout conditions:
* i. The current timestamp has exceeded the allowed window duration.
* ii. A timestamp was received that has jumped backwards by more than
* the allowed window duration (e.g., timestamp clock roll-over).
*/
window_timeout =
(sample_time_us > gyro_cal->gyro_window_timeout_duration_us +
gyro_cal->gyro_window_start_us) ||
(sample_time_us + gyro_cal->gyro_window_timeout_duration_us <
gyro_cal->gyro_window_start_us);
/* If a timeout occurred then reset to known good state. */
if (window_timeout) {
/* Reset stillness detectors and restart data capture. */
gyro_still_det_reset(&gyro_cal->accel_stillness_detect,
/*reset_stats=*/true);
gyro_still_det_reset(&gyro_cal->gyro_stillness_detect,
/*reset_stats=*/true);
gyro_still_det_reset(&gyro_cal->mag_stillness_detect,
/*reset_stats=*/true);
/* Resets the temperature and sensor mean data. */
gyro_temperature_stats_tracker_reset(gyro_cal);
gyro_still_mean_tracker_reset(gyro_cal);
/* Resets the stillness window end-time. */
gyro_cal->stillness_win_endtime_us = 0;
/* Force stillness confidence to zero. */
gyro_cal->accel_stillness_detect.prev_stillness_confidence = 0;
gyro_cal->gyro_stillness_detect.prev_stillness_confidence = 0;
gyro_cal->mag_stillness_detect.prev_stillness_confidence = 0;
gyro_cal->stillness_confidence = 0;
gyro_cal->prev_still = false;
/*
* If there are no magnetometer samples being received then
* operate the calibration algorithm without this sensor.
*/
if (!gyro_cal->mag_stillness_detect.stillness_window_ready &&
gyro_cal->using_mag_sensor) {
gyro_cal->using_mag_sensor = false;
}
/* Assert window timeout flags. */
gyro_cal->gyro_window_start_us = 0;
}
}
void gyro_temperature_stats_tracker_reset(struct gyro_cal *gyro_cal)
{
/* Resets the mean accumulator. */
gyro_cal->temperature_mean_tracker.num_points = 0;
gyro_cal->temperature_mean_tracker.mean_accumulator = INT_TO_FP(0);
/* Initializes the min/max temperatures values. */
gyro_cal->temperature_mean_tracker.temperature_min_kelvin = 0x7fff;
gyro_cal->temperature_mean_tracker.temperature_max_kelvin = 0xffff;
}
void gyro_temperature_stats_tracker_update(struct gyro_cal *gyro_cal,
int temperature_kelvin)
{
/* Does the mean accumulation. */
gyro_cal->temperature_mean_tracker.mean_accumulator +=
temperature_kelvin;
gyro_cal->temperature_mean_tracker.num_points++;
/* Tracks the min, max, and latest temperature values. */
gyro_cal->temperature_mean_tracker.latest_temperature_kelvin =
temperature_kelvin;
if (gyro_cal->temperature_mean_tracker.temperature_min_kelvin >
temperature_kelvin) {
gyro_cal->temperature_mean_tracker.temperature_min_kelvin =
temperature_kelvin;
}
if (gyro_cal->temperature_mean_tracker.temperature_max_kelvin <
temperature_kelvin) {
gyro_cal->temperature_mean_tracker.temperature_max_kelvin =
temperature_kelvin;
}
}
void gyro_temperature_stats_tracker_store(struct gyro_cal *gyro_cal)
{
/*
* Store the most recent temperature statistics data to the
* gyro_cal data structure. This functionality allows previous
* results to be recalled when the device suddenly becomes "not
* still".
*/
if (gyro_cal->temperature_mean_tracker.num_points > 0)
gyro_cal->temperature_mean_kelvin =
gyro_cal->temperature_mean_tracker.mean_accumulator /
gyro_cal->temperature_mean_tracker.num_points;
else
gyro_cal->temperature_mean_kelvin =
gyro_cal->temperature_mean_tracker
.latest_temperature_kelvin;
}
bool gyro_temperature_stats_tracker_eval(struct gyro_cal *gyro_cal)
{
bool min_max_temp_exceeded = false;
/* Determines if the min/max delta exceeded the set limit. */
if (gyro_cal->temperature_mean_tracker.num_points > 0) {
min_max_temp_exceeded =
(gyro_cal->temperature_mean_tracker
.temperature_max_kelvin -
gyro_cal->temperature_mean_tracker
.temperature_min_kelvin) >
gyro_cal->temperature_delta_limit_kelvin;
}
return min_max_temp_exceeded;
}
void gyro_still_mean_tracker_reset(struct gyro_cal *gyro_cal)
{
size_t i;
/* Resets the min/max window mean values to a default value. */
for (i = 0; i < 3; i++) {
gyro_cal->window_mean_tracker.gyro_winmean_min[i] = FLT_MAX;
gyro_cal->window_mean_tracker.gyro_winmean_max[i] = -FLT_MAX;
}
}
void gyro_still_mean_tracker_update(struct gyro_cal *gyro_cal)
{
int i;
/* Computes the min/max window mean values. */
for (i = 0; i < 3; ++i) {
if (gyro_cal->window_mean_tracker.gyro_winmean_min[i] >
gyro_cal->gyro_stillness_detect.win_mean[i]) {
gyro_cal->window_mean_tracker.gyro_winmean_min[i] =
gyro_cal->gyro_stillness_detect.win_mean[i];
}
if (gyro_cal->window_mean_tracker.gyro_winmean_max[i] <
gyro_cal->gyro_stillness_detect.win_mean[i]) {
gyro_cal->window_mean_tracker.gyro_winmean_max[i] =
gyro_cal->gyro_stillness_detect.win_mean[i];
}
}
}
void gyro_still_mean_tracker_store(struct gyro_cal *gyro_cal)
{
/*
* Store the most recent "stillness" mean data to the gyro_cal
* data structure. This functionality allows previous results to
* be recalled when the device suddenly becomes "not still".
*/
memcpy(gyro_cal->gyro_winmean_min,
gyro_cal->window_mean_tracker.gyro_winmean_min,
sizeof(gyro_cal->window_mean_tracker.gyro_winmean_min));
memcpy(gyro_cal->gyro_winmean_max,
gyro_cal->window_mean_tracker.gyro_winmean_max,
sizeof(gyro_cal->window_mean_tracker.gyro_winmean_max));
}
bool gyro_still_mean_tracker_eval(struct gyro_cal *gyro_cal)
{
bool mean_not_stable = false;
size_t i;
/*
* Performs the stability check and returns the 'true' if the
* difference between min/max window mean value is outside the
* stable range.
*/
for (i = 0; i < 3 && !mean_not_stable; i++) {
mean_not_stable |=
(gyro_cal->window_mean_tracker.gyro_winmean_max[i] -
gyro_cal->window_mean_tracker.gyro_winmean_min[i]) >
gyro_cal->stillness_mean_delta_limit;
}
return mean_not_stable;
}
|