summaryrefslogtreecommitdiff
path: root/common/lightbar.c
blob: 879da255315fd2878ad0c92e4450047bd9dc508e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
/*
 * Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 *
 * LED controls.
 */

#ifdef LIGHTBAR_SIMULATION
#include "simulation.h"
#else
#include "battery.h"
#include "charge_state.h"
#include "common.h"
#include "console.h"
#include "ec_commands.h"
#include "hooks.h"
#include "host_command.h"
#include "lb_common.h"
#include "lightbar.h"
#include "pwm.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#endif

/*
 * The Link lightbar had no version command, so defaulted to zero. We have
 * added a couple of new commands, so we've updated the version. Any
 * optional features in the current version should be marked with flags.
 */
#define LIGHTBAR_IMPLEMENTATION_VERSION 1
#define LIGHTBAR_IMPLEMENTATION_FLAGS   0

/* Console output macros */
#define CPUTS(outstr) cputs(CC_LIGHTBAR, outstr)
#define CPRINTS(format, args...) cprints(CC_LIGHTBAR, format, ## args)

#define FP_SCALE 10000

/******************************************************************************/
/* Here's some state that we might want to maintain across sysjumps, just to
 * prevent the lightbar from flashing during normal boot as the EC jumps from
 * RO to RW. */
static struct p_state {
	/* What patterns are we showing? */
	enum lightbar_sequence cur_seq;
	enum lightbar_sequence prev_seq;

	/* Quantized battery charge level: 0=low 1=med 2=high 3=full. */
	int battery_level;
	int battery_percent;

	/* It's either charging or discharging. */
	int battery_is_charging;

	/* Is power-on prevented due to battery level? */
	int battery_is_power_on_prevented;

	/* Pattern variables for state S0. */
	uint16_t w0;				/* primary phase */
	uint8_t ramp;				/* ramp-in for S3->S0 */

	uint8_t _pad0;				/* next item is __packed */

	/* Tweakable parameters. */
	union {
		struct lightbar_params_v1 p;
		struct {
			struct lightbar_params_v2_timing timing;
			struct lightbar_params_v2_tap tap;
			struct lightbar_params_v2_oscillation osc;
			struct lightbar_params_v2_brightness bright;
			struct lightbar_params_v2_thresholds thlds;
			struct lightbar_params_v2_colors colors;
		} p_v2;
	};
} st;

/* Each of the parameters must be less than 120 bytes
 * (crbug.com/467716)
 */
#define MAX_PARAM_SIZE 120
BUILD_ASSERT(sizeof(struct lightbar_params_v2_timing) <= MAX_PARAM_SIZE);
BUILD_ASSERT(sizeof(struct lightbar_params_v2_tap) <= MAX_PARAM_SIZE);
BUILD_ASSERT(sizeof(struct lightbar_params_v2_oscillation) <= MAX_PARAM_SIZE);
BUILD_ASSERT(sizeof(struct lightbar_params_v2_brightness) <= MAX_PARAM_SIZE);
BUILD_ASSERT(sizeof(struct lightbar_params_v2_thresholds) <= MAX_PARAM_SIZE);
BUILD_ASSERT(sizeof(struct lightbar_params_v2_colors) <= MAX_PARAM_SIZE);
#undef MAX_PARAM_SIZE

static const struct lightbar_params_v1 default_params = {
	.google_ramp_up = 2500,
	.google_ramp_down = 10000,
	.s3s0_ramp_up = 2000,
	.s0_tick_delay = { 45000, 30000 },	/* battery, AC */
	.s0a_tick_delay = { 5000, 3000 },	/* battery, AC */
	.s0s3_ramp_down = 2000,
	.s3_sleep_for = 5 * SECOND,		/* between checks */
	.s3_ramp_up = 2500,
	.s3_ramp_down = 10000,
	.s5_ramp_up = 2500,
	.s5_ramp_down = 10000,
	.tap_tick_delay = 5000,			/* oscillation step time */
	.tap_gate_delay = 200 * MSEC,		/* segment gating delay */
	.tap_display_time = 3 * SECOND,		/* total sequence time */

	/* TODO (crosbug.com/p/36996): remove unused tap_pct_red */
	.tap_pct_red = 14,			/* below this is red */
	.tap_pct_green = 94,			/* above this is green */
	.tap_seg_min_on = 35,		        /* min intensity (%) for "on" */
	.tap_seg_max_on = 100,			/* max intensity (%) for "on" */
	.tap_seg_osc = 50,			/* amplitude for charging osc */
	.tap_idx = {5, 6, 7},			/* color [red, yellow, green] */

	.osc_min = { 0x60, 0x60 },		/* battery, AC */
	.osc_max = { 0xd0, 0xd0 },		/* battery, AC */
	.w_ofs = {24, 24},			/* phase offset, 256 == 2*PI */

	.bright_bl_off_fixed = {0xcc, 0xff},	/* backlight off: battery, AC */
	.bright_bl_on_min = {0xcc, 0xff},	/* backlight on: battery, AC */
	.bright_bl_on_max = {0xcc, 0xff},	/* backlight on: battery, AC */

	.battery_threshold = { 14, 40, 99 },	/* percent, lowest to highest */
	.s0_idx = {
		{ 5, 4, 4, 4 },		/* battery: 0 = red, other = blue */
		{ 4, 4, 4, 4 }		/* AC: always blue */
	},
	.s3_idx = {
		{ 5, 0xff, 0xff, 0xff },       /* battery: 0 = red, else off */
		{ 0xff, 0xff, 0xff, 0xff }     /* AC: do nothing */
	},
	.s5_idx = 5,			       /* flash red */
	.color = {
		/*
		 * These values have been optically calibrated for the
		 * Samus LEDs to best match the official colors, described at
		 * https://sites.google.com/a/google.com/brandsite/the-colours
		 * See crosbug.com/p/33017 before making any changes.
		 */
		{0x34, 0x70, 0xb4},		/* 0: Google blue */
		{0xbc, 0x50, 0x2c},		/* 1: Google red */
		{0xd0, 0xe0, 0x00},		/* 2: Google yellow */
		{0x50, 0xa0, 0x40},		/* 3: Google green */
		/* These are primary colors */
		{0x00, 0x00, 0xff},		/* 4: full blue */
		{0xff, 0x00, 0x00},		/* 5: full red */
		{0xff, 0xff, 0x00},		/* 6: full yellow */
		{0x00, 0xff, 0x00},		/* 7: full green */
	},
};

#define LB_SYSJUMP_TAG 0x4c42			/* "LB" */
static void lightbar_preserve_state(void)
{
	system_add_jump_tag(LB_SYSJUMP_TAG, 0, sizeof(st), &st);
}
DECLARE_HOOK(HOOK_SYSJUMP, lightbar_preserve_state, HOOK_PRIO_DEFAULT);

static void lightbar_restore_state(void)
{
	const uint8_t *old_state = 0;
	int size;

	old_state = system_get_jump_tag(LB_SYSJUMP_TAG, 0, &size);
	if (old_state && size == sizeof(st)) {
		memcpy(&st, old_state, size);
		CPRINTS("LB state restored: %d %d - %d %d/%d",
			st.cur_seq, st.prev_seq,
			st.battery_is_charging,
			st.battery_percent,
			st.battery_level);
	} else {
		st.cur_seq = st.prev_seq = LIGHTBAR_S5;
		st.battery_percent = 100;
		st.battery_level = LB_BATTERY_LEVELS - 1;
		st.w0 = 0;
		st.ramp = 0;
		memcpy(&st.p, &default_params, sizeof(st.p));
		CPRINTS("LB state initialized");
	}
}

/******************************************************************************/
/* The patterns are generally dependent on the current battery level and AC
 * state. These functions obtain that information, generally by querying the
 * power manager task. In demo mode, the keyboard task forces changes to the
 * state by calling the demo_* functions directly. */
/******************************************************************************/

#ifdef CONFIG_PWM_KBLIGHT
static int last_backlight_level;
#endif

static int demo_mode = DEMO_MODE_DEFAULT;

static int quantize_battery_level(int pct)
{
	int i, bl = 0;
	for (i = 0; i < LB_BATTERY_LEVELS - 1; i++)
		if (pct >= st.p.battery_threshold[i])
			bl++;
	return bl;
}

/* Update the known state. */
static void get_battery_level(void)
{
	int pct = 0;
	int bl;

	if (demo_mode)
		return;

#ifdef HAS_TASK_CHARGER
	st.battery_percent = pct = charge_get_percent();
	st.battery_is_charging = (PWR_STATE_DISCHARGE != charge_get_state());
	st.battery_is_power_on_prevented = charge_prevent_power_on();
#endif

	/* Find the new battery level */
	bl = quantize_battery_level(pct);

	/* Use some hysteresis to avoid flickering */
	if (bl > st.battery_level
	    && pct >= (st.p.battery_threshold[bl-1] + 1))
		st.battery_level = bl;
	else if (bl < st.battery_level &&
		 pct <= (st.p.battery_threshold[bl] - 1))
		st.battery_level = bl;

#ifdef CONFIG_PWM_KBLIGHT
	/*
	 * With nothing else to go on, use the keyboard backlight level to *
	 * set the brightness. In general, if the keyboard backlight
	 * is OFF (which it is when ambient is bright), use max brightness for
	 * lightbar. If keyboard backlight is ON, use keyboard backlight
	 * brightness. That fails if the keyboard backlight is off because
	 * someone's watching a movie in the dark, of course. Ideally we should
	 * just let the AP control it directly.
	 */
	if (pwm_get_enabled(PWM_CH_KBLIGHT)) {
		pct = pwm_get_duty(PWM_CH_KBLIGHT);
		pct = (255 * pct) / 100;  /* 00 - FF */
		if (pct > st.p.bright_bl_on_max[st.battery_is_charging])
			pct = st.p.bright_bl_on_max[st.battery_is_charging];
		else if (pct < st.p.bright_bl_on_min[st.battery_is_charging])
			pct = st.p.bright_bl_on_min[st.battery_is_charging];
	} else
		pct = st.p.bright_bl_off_fixed[st.battery_is_charging];

	if (pct != last_backlight_level) {
		last_backlight_level = pct;
		lb_set_brightness(pct);
	}
#endif
}

/* Forcing functions for demo mode, called by the keyboard task. */

/* Up/Down keys */
#define DEMO_CHARGE_STEP 1
void demo_battery_level(int inc)
{
	if (!demo_mode)
		return;

	st.battery_percent += DEMO_CHARGE_STEP * inc;

	if (st.battery_percent > 100)
		st.battery_percent = 100;
	else if (st.battery_percent < 0)
		st.battery_percent = 0;

	st.battery_level = quantize_battery_level(st.battery_percent);

	CPRINTS("LB demo: battery_percent = %d%%, battery_level=%d",
		st.battery_percent, st.battery_level);
}

/* Left/Right keys */

void demo_is_charging(int ischarge)
{
	if (!demo_mode)
		return;

	st.battery_is_charging = ischarge;
	CPRINTS("LB demo: battery_is_charging=%d",
		st.battery_is_charging);
}

/* Bright/Dim keys */
void demo_brightness(int inc)
{
	int b;

	if (!demo_mode)
		return;

	b = lb_get_brightness() + (inc * 16);
	if (b > 0xff)
		b = 0xff;
	else if (b < 0)
		b = 0;
	lb_set_brightness(b);
}

/* T key */
void demo_tap(void)
{
	if (!demo_mode)
		return;
	lightbar_sequence(LIGHTBAR_TAP);
}

/******************************************************************************/
/* Helper functions and data. */
/******************************************************************************/

#define F(x) (x * FP_SCALE)
static const uint16_t _ramp_table[] = {
	F(0.000000), F(0.002408), F(0.009607), F(0.021530), F(0.038060),
	F(0.059039), F(0.084265), F(0.113495), F(0.146447), F(0.182803),
	F(0.222215), F(0.264302), F(0.308658), F(0.354858), F(0.402455),
	F(0.450991), F(0.500000), F(0.549009), F(0.597545), F(0.645142),
	F(0.691342), F(0.735698), F(0.777785), F(0.817197), F(0.853553),
	F(0.886505), F(0.915735), F(0.940961), F(0.961940), F(0.978470),
	F(0.990393), F(0.997592), F(1.000000),
};
#undef F

/* This function provides a smooth ramp up from 0.0 to 1.0 and back to 0.0,
 * for input from 0x00 to 0xff. */
static inline int cycle_010(uint8_t i)
{
	uint8_t bucket, index;

	if (i == 128)
		return FP_SCALE;
	else if (i > 128)
		i = 256 - i;

	bucket = i >> 2;
	index = i & 0x3;

	return _ramp_table[bucket] +
		((_ramp_table[bucket + 1] - _ramp_table[bucket]) * index >> 2);
}

/* This function provides a smooth oscillation between -0.5 and +0.5.
 * Zero starts at 0x00. */
static inline int cycle_0p0n0(uint8_t i)
{
	return cycle_010(i + 64) - FP_SCALE / 2;
}

/* This function provides a pulsing oscillation between -0.5 and +0.5. */
static inline int cycle_npn(uint16_t i)
{
	if ((i / 256) % 4)
		return -FP_SCALE / 2;
	return cycle_010(i) - FP_SCALE / 2;
}

/******************************************************************************/
/* Here's where we keep messages waiting to be delivered to the lightbar task.
 * If more than one is sent before the task responds, we only want to deliver
 * the latest one. */
static uint32_t pending_msg;
/* And here's the task event that we use to trigger delivery. */
#define PENDING_MSG 1

/* Interruptible delay. */
#define WAIT_OR_RET(A) do {				\
		uint32_t msg = task_wait_event(A);	\
		uint32_t p_msg = pending_msg;		\
		if (TASK_EVENT_CUSTOM(msg) == PENDING_MSG &&	\
		    p_msg != st.cur_seq)			\
			return p_msg; } while (0)

/******************************************************************************/
/* Here are the preprogrammed sequences. */
/******************************************************************************/

/* Pulse google colors once, off to on to off. */
static uint32_t pulse_google_colors(void)
{
	int w, i, r, g, b;
	int f;

	for (w = 0; w < 128; w += 2) {
		f = cycle_010(w);
		for (i = 0; i < NUM_LEDS; i++) {
			r = st.p.color[i].r * f / FP_SCALE;
			g = st.p.color[i].g * f / FP_SCALE;
			b = st.p.color[i].b * f / FP_SCALE;
			lb_set_rgb(i, r, g, b);
		}
		WAIT_OR_RET(st.p.google_ramp_up);
	}
	for (w = 128; w <= 256; w++) {
		f = cycle_010(w);
		for (i = 0; i < NUM_LEDS; i++) {
			r = st.p.color[i].r * f / FP_SCALE;
			g = st.p.color[i].g * f / FP_SCALE;
			b = st.p.color[i].b * f / FP_SCALE;
			lb_set_rgb(i, r, g, b);
		}
		WAIT_OR_RET(st.p.google_ramp_down);
	}

	return 0;
}

/* CPU is waking from sleep. */
static uint32_t sequence_S3S0(void)
{
	int w, r, g, b;
	int f, fmin;
	int ci;
	uint32_t res;

	lb_init();
	lb_on();
	get_battery_level();

	res = pulse_google_colors();
	if (res)
		return res;

#ifndef BLUE_PULSING
	/* next sequence */
	return LIGHTBAR_S0;
#endif

	/* Ramp up to starting brightness, using S0 colors */
	ci = st.p.s0_idx[st.battery_is_charging][st.battery_level];
	if (ci >= ARRAY_SIZE(st.p.color))
		ci = 0;

	fmin = st.p.osc_min[st.battery_is_charging] * FP_SCALE / 255;

	for (w = 0; w <= 128; w++) {
		f = cycle_010(w) * fmin / FP_SCALE;
		r = st.p.color[ci].r * f / FP_SCALE;
		g = st.p.color[ci].g * f / FP_SCALE;
		b = st.p.color[ci].b * f / FP_SCALE;
		lb_set_rgb(NUM_LEDS, r, g, b);
		WAIT_OR_RET(st.p.s3s0_ramp_up);
	}

	/* Initial conditions */
	st.w0 = -256;				/* start cycle_npn() quietly */
	st.ramp = 0;

	/* Ready for S0 */
	return LIGHTBAR_S0;
}

#ifdef BLUE_PULSING

/* CPU is fully on */
static uint32_t sequence_S0(void)
{
	int tick, last_tick;
	timestamp_t start, now;
	uint8_t r, g, b;
	int i, ci;
	uint8_t w_ofs;
	uint16_t w;
	int f, fmin, fmax, base_s0, osc_s0, f_ramp;

	start = get_time();
	tick = last_tick = 0;

	lb_set_rgb(NUM_LEDS, 0, 0, 0);
	lb_on();

	while (1) {
		now = get_time();

		/* Only check the battery state every few seconds. The battery
		 * charging task doesn't update as quickly as we do, and isn't
		 * always valid for a bit after jumping from RO->RW. */
		tick = (now.le.lo - start.le.lo) / SECOND;
		if (tick % 4 == 3 && tick != last_tick) {
			get_battery_level();
			last_tick = tick;
		}

		/* Calculate the colors */
		ci = st.p.s0_idx[st.battery_is_charging][st.battery_level];
		if (ci >= ARRAY_SIZE(st.p.color))
			ci = 0;
		w_ofs = st.p.w_ofs[st.battery_is_charging];
		fmin = st.p.osc_min[st.battery_is_charging] * FP_SCALE / 255;
		fmax = st.p.osc_max[st.battery_is_charging] * FP_SCALE / 255;
		base_s0 = (fmax + fmin) / 2;
		osc_s0 = fmax - fmin;
		f_ramp = st.ramp * FP_SCALE / 255;

		for (i = 0; i < NUM_LEDS; i++) {
			w = st.w0 - i * w_ofs * f_ramp / FP_SCALE;
			f = base_s0 + osc_s0 * cycle_npn(w) / FP_SCALE;
			r = st.p.color[ci].r * f / FP_SCALE;
			g = st.p.color[ci].g * f / FP_SCALE;
			b = st.p.color[ci].b * f / FP_SCALE;
			lb_set_rgb(i, r, g, b);
		}

		/* Increment the phase */
		if (st.battery_is_charging)
			st.w0--;
		else
			st.w0++;

		/* Continue ramping in if needed */
		if (st.ramp < 0xff)
			st.ramp++;

		i = st.p.s0a_tick_delay[st.battery_is_charging];
		WAIT_OR_RET(i);
	}
	return 0;
}

#else  /* just simple google colors */

static uint32_t sequence_S0(void)
{
	int w, i, r, g, b;
	int f;

	lb_set_rgb(NUM_LEDS, 0, 0, 0);
	lb_on();

	/* Ramp up */
	for (w = 0; w < 128; w += 2) {
		f = cycle_010(w);
		for (i = 0; i < NUM_LEDS; i++) {
			r = st.p.color[i].r * f / FP_SCALE;
			g = st.p.color[i].g * f / FP_SCALE;
			b = st.p.color[i].b * f / FP_SCALE;
			lb_set_rgb(i, r, g, b);
		}
		WAIT_OR_RET(st.p.google_ramp_up);
	}

	while (1) {

		get_battery_level();

		/* Not really low use google colors */
		if (st.battery_level) {
			for (i = 0; i < NUM_LEDS; i++) {
				r = st.p.color[i].r;
				g = st.p.color[i].g;
				b = st.p.color[i].b;
				lb_set_rgb(i, r, g, b);
			}
		} else {
			r = st.p.color[5].r;
			g = st.p.color[5].g;
			b = st.p.color[5].b;
			lb_set_rgb(4, r, g, b);
		}

		WAIT_OR_RET(1 * SECOND);
	}
	return 0;
}

#endif

/* CPU is going to sleep. */
static uint32_t sequence_S0S3(void)
{
	int w, i, r, g, b;
	int f;
	uint8_t drop[NUM_LEDS][3];
	uint32_t res;

	/* Grab current colors */
	for (i = 0; i < NUM_LEDS; i++)
		lb_get_rgb(i, &drop[i][0], &drop[i][1], &drop[i][2]);

	/* Fade down to black */
	for (w = 128; w <= 256; w++) {
		f = cycle_010(w);
		for (i = 0; i < NUM_LEDS; i++) {
			r = drop[i][0] * f / FP_SCALE;
			g = drop[i][1] * f / FP_SCALE;
			b = drop[i][2] * f / FP_SCALE;
			lb_set_rgb(i, r, g, b);
		}
		WAIT_OR_RET(st.p.s0s3_ramp_down);
	}

	/* pulse once and done */
	res = pulse_google_colors();
	if (res)
		return res;

	/* next sequence */
	return LIGHTBAR_S3;
}

/* CPU is sleeping */
static uint32_t sequence_S3(void)
{
	int r, g, b;
	int w;
	int f;
	int ci;

	lb_off();
	lb_init();
	lb_set_rgb(NUM_LEDS, 0, 0, 0);
	while (1) {
		WAIT_OR_RET(st.p.s3_sleep_for);
		get_battery_level();

		/* only pulse if we've been given a valid color index */
		ci = st.p.s3_idx[st.battery_is_charging][st.battery_level];
		if (ci >= ARRAY_SIZE(st.p.color))
			continue;

		/* pulse once */
		lb_on();

		for (w = 0; w < 128; w += 2) {
			f = cycle_010(w);
			r = st.p.color[ci].r * f / FP_SCALE;
			g = st.p.color[ci].g * f / FP_SCALE;
			b = st.p.color[ci].b * f / FP_SCALE;
			lb_set_rgb(NUM_LEDS, r, g, b);
			WAIT_OR_RET(st.p.s3_ramp_up);
		}
		for (w = 128; w <= 256; w++) {
			f = cycle_010(w);
			r = st.p.color[ci].r * f / FP_SCALE;
			g = st.p.color[ci].g * f / FP_SCALE;
			b = st.p.color[ci].b * f / FP_SCALE;
			lb_set_rgb(NUM_LEDS, r, g, b);
			WAIT_OR_RET(st.p.s3_ramp_down);
		}

		lb_set_rgb(NUM_LEDS, 0, 0, 0);
		lb_off();
	}
	return 0;
}


/* CPU is powering up. We generally boot fast enough that we don't have time
 * to do anything interesting in the S3 state, but go straight on to S0. */
static uint32_t sequence_S5S3(void)
{
	/* The controllers need 100us after power is applied before they'll
	 * respond. Don't return early, because we still want to initialize the
	 * lightbar even if another message comes along while we're waiting. */
	usleep(100);
	lb_init();
	lb_set_rgb(NUM_LEDS, 0, 0, 0);
	lb_on();
	/* next sequence */
	return LIGHTBAR_S3;
}

/* Sleep to off. The S3->S5 transition takes about 10msec, so just wait. */
static uint32_t sequence_S3S5(void)
{
	lb_off();
	/* next sequence */
	return LIGHTBAR_S5;
}

/* Pulse S5 color to indicate that the battery is so critically low that it
 * must charge first before the system can power on. */
static uint32_t pulse_s5_color(void)
{
	int r, g, b;
	int f;
	int w;
	struct rgb_s *color = &st.p.color[st.p.s5_idx];

	for (w = 0; w < 128; w += 2) {
		f = cycle_010(w);
		r = color->r * f / FP_SCALE;
		g = color->g * f / FP_SCALE;
		b = color->b * f / FP_SCALE;
		lb_set_rgb(NUM_LEDS, r, g, b);
		WAIT_OR_RET(st.p.s5_ramp_up);
	}
	for (w = 128; w <= 256; w++) {
		f = cycle_010(w);
		r = color->r * f / FP_SCALE;
		g = color->g * f / FP_SCALE;
		b = color->b * f / FP_SCALE;
		lb_set_rgb(NUM_LEDS, r, g, b);
		WAIT_OR_RET(st.p.s5_ramp_down);
	}

	return 0;
}

/* CPU is off. Pulse the lightbar if a charger is attached and the battery is
 * so low that the system cannot power on. Otherwise, the lightbar loses power
 * when the CPU is in S5, so there's nothing to do. We'll just wait here until
 * the state changes. */
static uint32_t sequence_S5(void)
{
	int initialized = 0;
	uint32_t res = 0;

	while (1) {
		get_battery_level();
		if (!st.battery_is_power_on_prevented ||
		    !st.battery_is_charging)
			break;

		if (!initialized) {
#ifdef CONFIG_LIGHTBAR_POWER_RAILS
			/* Request that lightbar power rails be turned on. */
			if (lb_power(1)) {
				lb_init();
				lb_set_rgb(NUM_LEDS, 0, 0, 0);
			}
#endif
			lb_on();
			initialized = 1;
		}

		res = pulse_s5_color();
		if (res)
			break;
	}

#ifdef CONFIG_LIGHTBAR_POWER_RAILS
	if (initialized)
		/* Suggest that the lightbar power rails can be shut down. */
		lb_power(0);
#endif
	lb_off();
	if (!res)
		WAIT_OR_RET(-1);
	return res;
}

/* The AP is going to poke at the lightbar directly, so we don't want the EC
 * messing with it. We'll just sit here and ignore all other messages until
 * we're told to continue (or until we think the AP is shutting down).
 */
static uint32_t sequence_STOP(void)
{
	uint32_t msg;

	do {
		msg = TASK_EVENT_CUSTOM(task_wait_event(-1));
		CPRINTS("LB %s() got pending_msg %d", __func__, pending_msg);
	} while (msg != PENDING_MSG || (
			 pending_msg != LIGHTBAR_RUN &&
			 pending_msg != LIGHTBAR_S0S3 &&
			 pending_msg != LIGHTBAR_S3 &&
			 pending_msg != LIGHTBAR_S3S5 &&
			 pending_msg != LIGHTBAR_S5));
	return 0;
}

/* Telling us to run when we're already running should do nothing. */
static uint32_t sequence_RUN(void)
{
	return 0;
}

/* We shouldn't come here, but if we do it shouldn't hurt anything. This
 * sequence is to indicate an internal error in the lightbar logic, not an
 * error with the Chromebook itself.
 */
static uint32_t sequence_ERROR(void)
{
	lb_init();
	lb_on();

	lb_set_rgb(0, 255, 255, 255);
	lb_set_rgb(1, 255, 0, 255);
	lb_set_rgb(2, 0, 255, 255);
	lb_set_rgb(3, 255, 255, 255);

	WAIT_OR_RET(10 * SECOND);
	return 0;
}

static const struct {
	uint8_t led;
	uint8_t r, g, b;
	unsigned int delay;
} konami[] = {

	{1, 0xff, 0xff, 0x00, 0},
	{2, 0xff, 0xff, 0x00, 100000},
	{1, 0x00, 0x00, 0x00, 0},
	{2, 0x00, 0x00, 0x00, 100000},

	{1, 0xff, 0xff, 0x00, 0},
	{2, 0xff, 0xff, 0x00, 100000},
	{1, 0x00, 0x00, 0x00, 0},
	{2, 0x00, 0x00, 0x00, 100000},

	{0, 0x00, 0x00, 0xff, 0},
	{3, 0x00, 0x00, 0xff, 100000},
	{0, 0x00, 0x00, 0x00, 0},
	{3, 0x00, 0x00, 0x00, 100000},

	{0, 0x00, 0x00, 0xff, 0},
	{3, 0x00, 0x00, 0xff, 100000},
	{0, 0x00, 0x00, 0x00, 0},
	{3, 0x00, 0x00, 0x00, 100000},

	{0, 0xff, 0x00, 0x00, 0},
	{1, 0xff, 0x00, 0x00, 100000},
	{0, 0x00, 0x00, 0x00, 0},
	{1, 0x00, 0x00, 0x00, 100000},

	{2, 0x00, 0xff, 0x00, 0},
	{3, 0x00, 0xff, 0x00, 100000},
	{2, 0x00, 0x00, 0x00, 0},
	{3, 0x00, 0x00, 0x00, 100000},

	{0, 0xff, 0x00, 0x00, 0},
	{1, 0xff, 0x00, 0x00, 100000},
	{0, 0x00, 0x00, 0x00, 0},
	{1, 0x00, 0x00, 0x00, 100000},

	{2, 0x00, 0xff, 0x00, 0},
	{3, 0x00, 0xff, 0x00, 100000},
	{2, 0x00, 0x00, 0x00, 0},
	{3, 0x00, 0x00, 0x00, 100000},

	{0, 0x00, 0xff, 0xff, 0},
	{2, 0x00, 0xff, 0xff, 100000},
	{0, 0x00, 0x00, 0x00, 0},
	{2, 0x00, 0x00, 0x00, 150000},

	{1, 0xff, 0x00, 0xff, 0},
	{3, 0xff, 0x00, 0xff, 100000},
	{1, 0x00, 0x00, 0x00, 0},
	{3, 0x00, 0x00, 0x00, 250000},

	{4, 0xff, 0xff, 0xff, 100000},
	{4, 0x00, 0x00, 0x00, 100000},

	{4, 0xff, 0xff, 0xff, 100000},
	{4, 0x00, 0x00, 0x00, 100000},

	{4, 0xff, 0xff, 0xff, 100000},
	{4, 0x00, 0x00, 0x00, 100000},

	{4, 0xff, 0xff, 0xff, 100000},
	{4, 0x00, 0x00, 0x00, 100000},

	{4, 0xff, 0xff, 0xff, 100000},
	{4, 0x00, 0x00, 0x00, 100000},

	{4, 0xff, 0xff, 0xff, 100000},
	{4, 0x00, 0x00, 0x00, 100000},
};

static uint32_t sequence_KONAMI_inner(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(konami); i++) {
		lb_set_rgb(konami[i].led,
			   konami[i].r, konami[i].g, konami[i].b);
		if (konami[i].delay)
			WAIT_OR_RET(konami[i].delay);
	}

	return 0;
}

static uint32_t sequence_KONAMI(void)
{
	int tmp;
	uint32_t r;

	/* First clear all segments */
	lb_set_rgb(NUM_LEDS, 0, 0, 0);

	/* Force brightness to max, then restore it */
	tmp = lb_get_brightness();
	lb_set_brightness(255);
	r = sequence_KONAMI_inner();
	lb_set_brightness(tmp);
	return r;
}

#ifdef CONFIG_LIGHTBAR_TAP_DIM_LAST_SEGMENT
/* Returns 0.0 to 1.0 for val in [min, min + ofs] */
static int range(int val, int min, int ofs)
{
	if (val <= min)
		return 0;
	if (val >= min+ofs)
		return FP_SCALE;
	return (val - min) * FP_SCALE / ofs;
}
#endif

/* Handy constant */
#define CUT (100 / NUM_LEDS)

static uint32_t sequence_TAP_inner(int dir)
{
	enum { RED, YELLOW, GREEN } base_color;
	timestamp_t start, now;
	uint32_t elapsed_time = 0;
	int i, l, ci, max_led;
	int f_osc, f_mult;
	int gi, gr, gate[NUM_LEDS] = {0, 0, 0, 0};
	uint8_t w = 0;
#ifdef CONFIG_LIGHTBAR_TAP_DIM_LAST_SEGMENT
	int f_min, f_delta, f_power;

	f_min = st.p.tap_seg_min_on * FP_SCALE / 100;
	f_delta = (st.p.tap_seg_max_on - st.p.tap_seg_min_on) * FP_SCALE / 100;
#endif
	f_osc = st.p.tap_seg_osc * FP_SCALE / 100;

	start = get_time();
	while (1) {
		get_battery_level();

		if (st.battery_level == 0)
			base_color = RED;
		else if (st.battery_percent > st.p.tap_pct_green)
			base_color = GREEN;
		else
			base_color = YELLOW;

		ci = st.p.tap_idx[base_color];
		max_led = st.battery_percent / CUT;

		/* Enable the segments gradually */
		gi = elapsed_time / st.p.tap_gate_delay;
		gr = elapsed_time % st.p.tap_gate_delay;
		if (gi < NUM_LEDS)
			gate[gi] = FP_SCALE * gr / st.p.tap_gate_delay;
		if (gi && gi <= NUM_LEDS)
			gate[gi - 1] = FP_SCALE;

		for (i = 0; i < NUM_LEDS; i++) {

#ifdef CONFIG_LIGHTBAR_TAP_DIM_LAST_SEGMENT
			if (max_led > i) {
				f_mult = FP_SCALE;
			} else if (max_led < i) {
				f_mult = 0;
			} else {
				switch (base_color) {
				case RED:
					f_power = range(st.battery_percent, 0,
						st.p.battery_threshold[0] - 1);
					break;
				case YELLOW:
					f_power = range(st.battery_percent,
							i * CUT, CUT - 1);
					break;
				case GREEN:
					/* green is always full on */
					f_power = FP_SCALE;
				}
				f_mult = f_min + f_power * f_delta / FP_SCALE;
			}
#else
			if (max_led >= i)
				f_mult = FP_SCALE;
			else if (max_led < i)
				f_mult = 0;
#endif

			f_mult = f_mult * gate[i] / FP_SCALE;

			/* Pulse when charging and not yet full */
			if (st.battery_is_charging &&
			    st.battery_percent <= st.p.tap_pct_green) {
				int scale = (FP_SCALE -
					     f_osc * cycle_010(w++) / FP_SCALE);
				f_mult = f_mult * scale / FP_SCALE;
			}

			l = dir ? i : NUM_LEDS - 1 - i;
			lb_set_rgb(l, f_mult * st.p.color[ci].r / FP_SCALE,
				   f_mult * st.p.color[ci].g / FP_SCALE,
				   f_mult * st.p.color[ci].b / FP_SCALE);
		}

		WAIT_OR_RET(st.p.tap_tick_delay);

		/* Return after some time has elapsed */
		now = get_time();
		elapsed_time = now.le.lo - start.le.lo;
		if (elapsed_time > st.p.tap_display_time)
			break;
	}
	return 0;
}

/* Override the tap direction for testing. -1 means ask the PD MCU. */
static int force_dir = -1;

/* Return 0 (left or none) or 1 (right) */
static int get_tap_direction(void)
{
	static int last_dir;
	int dir = 0;

	if (force_dir >= 0)
		dir = force_dir;
#ifdef HAS_TASK_PDCMD
	else
		dir = pd_get_active_charge_port();
#endif
	if (dir < 0)
		dir = last_dir;
	else if (dir != 1)
		dir = 0;

	CPRINTS("LB tap direction %d", dir);
	last_dir = dir;
	return dir;
}

static uint32_t sequence_TAP(void)
{
	int i;
	uint32_t r;
	uint8_t br, save[NUM_LEDS][3];
	int dir;

	/*
	 * There's a lot of unavoidable glitchiness on the AC_PRESENT interrupt
	 * each time the EC boots, resulting in fights between the TAP sequence
	 * and the S5S3->S3->S3S0->S0 sequences. This delay prevents the lights
	 * from flickering without reducing the responsiveness to manual taps.
	 */
	WAIT_OR_RET(100 * MSEC);

	/* Which direction should the power meter go? */
	dir = get_tap_direction();

#ifdef CONFIG_LIGHTBAR_POWER_RAILS
	/* Request that the lightbar power rails be turned on. */
	if (lb_power(1)) {
		lb_init();
		lb_set_rgb(NUM_LEDS, 0, 0, 0);
	}
#endif
	lb_on();

	for (i = 0; i < NUM_LEDS; i++)
		lb_get_rgb(i, &save[i][0], &save[i][1], &save[i][2]);
	br = lb_get_brightness();
	lb_set_brightness(255);

	r = sequence_TAP_inner(dir);

	lb_set_brightness(br);
	for (i = 0; i < NUM_LEDS; i++)
		lb_set_rgb(i, save[i][0], save[i][1], save[i][2]);

#ifdef CONFIG_LIGHTBAR_POWER_RAILS
	/* Suggest that the lightbar power rails can be shut down again. */
	lb_power(0);
#endif
	return r;
}

/****************************************************************************/
/* Lightbar bytecode interpreter: Lightbyte. */
/****************************************************************************/

/* When a program halts, return this. */
#define PROGRAM_FINISHED 2

static struct lightbar_program cur_prog;
static struct lightbar_program next_prog;
static uint8_t pc;

static uint8_t led_desc[NUM_LEDS][LB_CONT_MAX][3];
static uint32_t lb_wait_delay;
static uint32_t lb_ramp_delay;
/* Get one byte of data pointed to by the pc and advance
 * the pc forward.
 */
static inline uint32_t decode_8(uint8_t *dest)
{
	if (pc >= cur_prog.size) {
		CPRINTS("pc 0x%02x out of bounds", pc);
		return EC_RES_INVALID_PARAM;
	}
	*dest = cur_prog.data[pc++];
	return EC_SUCCESS;
}

/* Get four bytes of data pointed to by the pc and advance
 * the pc forward that amount.
 */
static inline uint32_t decode_32(uint32_t *dest)
{
	if (pc >= cur_prog.size - 3) {
		CPRINTS("pc 0x%02x near or out of bounds", pc);
		return EC_RES_INVALID_PARAM;
	}
	*dest  = cur_prog.data[pc++] << 24;
	*dest |= cur_prog.data[pc++] << 16;
	*dest |= cur_prog.data[pc++] <<  8;
	*dest |= cur_prog.data[pc++];
	return EC_SUCCESS;
}

/* ON - turn on lightbar */
static uint32_t lightbyte_ON(void)
{
	lb_on();
	return EC_SUCCESS;
}

/* OFF - turn off lightbar */
static uint32_t lightbyte_OFF(void)
{
	lb_off();
	return EC_SUCCESS;
}

/* JUMP xx - jump to immediate location
 * Changes the pc to the one-byte immediate argument.
 */
static uint32_t lightbyte_JUMP(void)
{
	return decode_8(&pc);
}

/* JUMP_BATTERY aa bb - switch on battery level
 * If the battery is low, changes pc to aa.
 * If the battery is high, changes pc to bb.
 * Otherwise, continues execution as normal.
 */
static uint32_t lightbyte_JUMP_BATTERY(void)
{
	uint8_t low_pc, high_pc;
	if (decode_8(&low_pc) != EC_SUCCESS)
		return EC_RES_INVALID_PARAM;
	if (decode_8(&high_pc) != EC_SUCCESS)
		return EC_RES_INVALID_PARAM;

	get_battery_level();
	if (st.battery_level == 0)
		pc = low_pc;
	else if (st.battery_level == 3)
		pc = high_pc;

	return EC_SUCCESS;
}

/* JUMP_IF_CHARGING xx - conditional jump to location
 * Changes the pc to xx if the device is charging.
 */
static uint32_t lightbyte_JUMP_IF_CHARGING(void)
{
	uint8_t charge_pc;
	if (decode_8(&charge_pc) != EC_SUCCESS)
		return EC_RES_INVALID_PARAM;

	if (st.battery_is_charging)
		pc = charge_pc;

	return EC_SUCCESS;
}

/* SET_WAIT_DELAY xx xx xx xx - set up to yield processor
 * Sets the wait delay to the given four-byte immediate, in
 * microseconds. Future WAIT instructions will wait for this
 * much time.
 */
static uint32_t lightbyte_SET_WAIT_DELAY(void)
{
	return decode_32(&lb_wait_delay);
}

/* SET_RAMP_DELAY xx xx xx xx - change ramp speed
 * This sets the length of time between ramp/cycle steps to
 * the four-byte immediate argument, which represents a duration
 * in milliseconds.
 */
static uint32_t lightbyte_SET_RAMP_DELAY(void)
{
	return decode_32(&lb_ramp_delay);
}

/* WAIT - yield processor for some time
 * Yields the processor for some amount of time set by the most
 * recent SET_WAIT_DELAY instruction.
 */
static uint32_t lightbyte_WAIT(void)
{
	if (lb_wait_delay != 0)
		WAIT_OR_RET(lb_wait_delay);

	return EC_SUCCESS;
}

/* SET_BRIGHTNESS xx
 * Sets the current brightness to the given one-byte
 * immediate argument.
 */
static uint32_t lightbyte_SET_BRIGHTNESS(void)
{
	uint8_t val;
	if (decode_8(&val) != EC_SUCCESS)
		return EC_RES_INVALID_PARAM;

	lb_set_brightness(val);
	return EC_SUCCESS;
}

/* SET_COLOR_SINGLE cc xx
 * SET_COLOR_RGB cc rr gg bb
 * Stores a color value in the led_desc structure.
 * cc is a bit-packed location to perform the action on.
 *
 * The high four bits are a bitset for which LEDs to operate on.
 * LED 0 is the lowest of the four bits.
 *
 * The next two bits are the control bits. This should be a value
 * in lb_control that is not LB_CONT_MAX, and the corresponding
 * color will be the one the action is performed on.
 *
 * The last two bits are the color bits if this instruction is
 * SET_COLOR_SINGLE. They correspond to a LB_COL value for the
 * channel to set the color for using the next immediate byte.
 * In SET_COLOR_RGB, these bits are don't-cares, as there should
 * always be three bytes that follow, which correspond to a
 * complete RGB specification.
 */
static uint32_t lightbyte_SET_COLOR_SINGLE(void)
{

	uint8_t packed_loc, led, control, color, value;
	int i;
	if (decode_8(&packed_loc) != EC_SUCCESS)
		return EC_RES_INVALID_PARAM;
	if (decode_8(&value) != EC_SUCCESS)
		return EC_RES_INVALID_PARAM;

	led = packed_loc >> 4;
	control = (packed_loc >> 2) & 0x3;
	color = packed_loc & 0x3;

	if (control >= LB_CONT_MAX)
		return EC_RES_INVALID_PARAM;

	for (i = 0; i < NUM_LEDS; i++)
		if (led & (1 << i))
			led_desc[i][control][color] = value;

	return EC_SUCCESS;
}

static uint32_t lightbyte_SET_COLOR_RGB(void)
{
	uint8_t packed_loc, r, g, b, led, control;
	int i;

	/* gross */
	if (decode_8(&packed_loc) != EC_SUCCESS)
		return EC_RES_INVALID_PARAM;
	if (decode_8(&r) != EC_SUCCESS)
		return EC_RES_INVALID_PARAM;
	if (decode_8(&g) != EC_SUCCESS)
		return EC_RES_INVALID_PARAM;
	if (decode_8(&b) != EC_SUCCESS)
		return EC_RES_INVALID_PARAM;

	led = packed_loc >> 4;
	control = (packed_loc >> 2) & 0x3;

	if (control >= LB_CONT_MAX)
		return EC_RES_INVALID_PARAM;

	for (i = 0; i < NUM_LEDS; i++)
		if (led & (1 << i)) {
			led_desc[i][control][LB_COL_RED] = r;
			led_desc[i][control][LB_COL_GREEN] = g;
			led_desc[i][control][LB_COL_BLUE] = b;
		}

	return EC_SUCCESS;
}

/* GET_COLORS - take current colors and push them to the state
 * Gets the current state of the LEDs and puts them in COLOR0.
 * Good for the beginning of a program if you need to fade in.
 */
static uint32_t lightbyte_GET_COLORS(void)
{
	int i;
	for (i = 0; i < NUM_LEDS; i++)
		lb_get_rgb(i, &led_desc[i][LB_CONT_COLOR0][LB_COL_RED],
			      &led_desc[i][LB_CONT_COLOR0][LB_COL_GREEN],
			      &led_desc[i][LB_CONT_COLOR0][LB_COL_BLUE]);

	return EC_SUCCESS;
}

/* SWAP_COLORS - swaps beginning and end colors in state
 * Exchanges COLOR0 and COLOR1 on all LEDs.
 */
static uint32_t lightbyte_SWAP_COLORS(void)
{
	int i, j, tmp;
	for (i = 0; i < NUM_LEDS; i++)
		for (j = 0; j < 3; j++) {
			tmp = led_desc[i][LB_CONT_COLOR0][j];
			led_desc[i][LB_CONT_COLOR0][j] =
				led_desc[i][LB_CONT_COLOR1][j];
			led_desc[i][LB_CONT_COLOR1][j] = tmp;
		}

	return EC_SUCCESS;
}

static inline int get_interp_value(int led, int color, int interp)
{
	int base = led_desc[led][LB_CONT_COLOR0][color];
	int delta = led_desc[led][LB_CONT_COLOR1][color] - base;
	return base + (delta * interp / FP_SCALE);
}

static void set_all_leds(int color)
{
	int i, r, g, b;
	for (i = 0; i < NUM_LEDS; i++) {
		r = led_desc[i][color][LB_COL_RED];
		g = led_desc[i][color][LB_COL_GREEN];
		b = led_desc[i][color][LB_COL_BLUE];
		lb_set_rgb(i, r, g, b);
	}
}

static uint32_t ramp_all_leds(int stop_at)
{
	int w, i, r, g, b, f;
	for (w = 0; w < stop_at; w++) {
		f = cycle_010(w);
		for (i = 0; i < NUM_LEDS; i++) {
			r = get_interp_value(i, LB_COL_RED, f);
			g = get_interp_value(i, LB_COL_GREEN, f);
			b = get_interp_value(i, LB_COL_BLUE, f);
			lb_set_rgb(i, r, g, b);
		}
		WAIT_OR_RET(lb_ramp_delay);
	}
	return EC_SUCCESS;
}

/* RAMP_ONCE - simple gradient or color set
 * If the ramp delay is set to zero, then this sets the color of
 * all LEDs to their respective COLOR1.
 * If the ramp delay is nonzero, then this sets their color to
 * their respective COLOR0, and takes them via interpolation to
 * COLOR1, with the delay time passing in between each step.
 */
static uint32_t lightbyte_RAMP_ONCE(void)
{
	/* special case for instantaneous set */
	if (lb_ramp_delay == 0) {
		set_all_leds(LB_CONT_COLOR1);
		return EC_SUCCESS;
	}

	return ramp_all_leds(128);
}

/* CYCLE_ONCE - simple cycle or color set
 * If the ramp delay is zero, then this sets the color of all LEDs
 * to their respective COLOR0.
 * If the ramp delay is nonzero, this sets the color of all LEDs
 * to COLOR0, then performs a ramp (as in RAMP_ONCE) to COLOR1,
 * and finally back to COLOR0.
 */
static uint32_t lightbyte_CYCLE_ONCE(void)
{
	/* special case for instantaneous set */
	if (lb_ramp_delay == 0) {
		set_all_leds(LB_CONT_COLOR0);
		return EC_SUCCESS;
	}

	return ramp_all_leds(256);
}

/* CYCLE - repeating cycle
 * Indefinitely ramps from COLOR0 to COLOR1, taking into
 * account the PHASE of each component of each color when
 * interpolating. (Different LEDs and different color channels
 * on a single LED can start at different places in the cycle,
 * though they will advance at the same rate.)
 *
 * If the ramp delay is zero, this instruction will error out.
 */
static uint32_t lightbyte_CYCLE(void)
{
	int w, i, r, g, b;

	/* what does it mean to cycle indefinitely with 0 delay? */
	if (lb_ramp_delay == 0)
		return EC_RES_INVALID_PARAM;

	for (w = 0;; w++) {
		for (i = 0; i < NUM_LEDS; i++) {
			r = get_interp_value(i, LB_COL_RED,
				cycle_010((w & 0xff) +
				led_desc[i][LB_CONT_PHASE][LB_COL_RED]));
			g = get_interp_value(i, LB_COL_GREEN,
				cycle_010((w & 0xff) +
				led_desc[i][LB_CONT_PHASE][LB_COL_GREEN]));
			b = get_interp_value(i, LB_COL_BLUE,
				cycle_010((w & 0xff) +
				led_desc[i][LB_CONT_PHASE][LB_COL_BLUE]));
			lb_set_rgb(i, r, g, b);
		}
		WAIT_OR_RET(lb_ramp_delay);
	}
	return EC_SUCCESS;
}

/* HALT - return with success
 * Show's over. Go back to what you were doing before.
 */
static uint32_t lightbyte_HALT(void)
{
	return PROGRAM_FINISHED;
}

#undef GET_INTERP_VALUE

#define OP(NAME, BYTES, MNEMONIC) NAME,
#include "lightbar_opcode_list.h"
enum lightbyte_opcode {
	LIGHTBAR_OPCODE_TABLE
	MAX_OPCODE
};
#undef OP

#define OP(NAME, BYTES, MNEMONIC) lightbyte_ ## NAME,
#include "lightbar_opcode_list.h"
static uint32_t (*lightbyte_dispatch[])(void) = {
	LIGHTBAR_OPCODE_TABLE
};
#undef OP

#define OP(NAME, BYTES, MNEMONIC) MNEMONIC,
#include "lightbar_opcode_list.h"
static const char * const lightbyte_names[] = {
	LIGHTBAR_OPCODE_TABLE
};
#undef OP

static uint32_t sequence_PROGRAM(void)
{
	uint8_t saved_brightness;
	uint8_t next_inst;
	uint32_t rc;
	uint8_t old_pc;

	/* load next program */
	memcpy(&cur_prog, &next_prog, sizeof(struct lightbar_program));

	/* reset program state */
	saved_brightness = lb_get_brightness();
	pc = 0;
	memset(led_desc, 0, sizeof(led_desc));
	lb_wait_delay = 0;
	lb_ramp_delay = 0;

	lb_on();
	lb_set_brightness(255);

	/* decode-execute loop */
	for (;;) {
		old_pc = pc;
		if (decode_8(&next_inst) != EC_SUCCESS)
			return EC_RES_INVALID_PARAM;

		if (next_inst >= MAX_OPCODE) {
			CPRINTS("LB PROGRAM pc: 0x%02x, "
				"found invalid opcode 0x%02x",
				old_pc, next_inst);
			lb_set_brightness(saved_brightness);
			return EC_RES_INVALID_PARAM;
		} else {
			CPRINTS("LB PROGRAM pc: 0x%02x, opcode 0x%02x -> %s",
				 old_pc, next_inst, lightbyte_names[next_inst]);
			rc = lightbyte_dispatch[next_inst]();
			if (rc) {
				lb_set_brightness(saved_brightness);
				return rc;
			}
		}

		/* yield processor in case we are stuck in a tight loop */
		WAIT_OR_RET(100);
	}
}

/****************************************************************************/
/* The main lightbar task. It just cycles between various pretty patterns. */
/****************************************************************************/

/* Distinguish "normal" sequences from one-shot sequences */
static inline int is_normal_sequence(enum lightbar_sequence seq)
{
	return (seq >= LIGHTBAR_S5 && seq <= LIGHTBAR_S3S5);
}

/* Link each sequence with a command to invoke it. */
struct lightbar_cmd_t {
	const char * const string;
	uint32_t (*sequence)(void);
};

#define LBMSG(state) { #state, sequence_##state }
#include "lightbar_msg_list.h"
static struct lightbar_cmd_t lightbar_cmds[] = {
	LIGHTBAR_MSG_LIST
};
#undef LBMSG

void lightbar_task(void)
{
	uint32_t next_seq;

	CPRINTS("LB task starting");

	lightbar_restore_state();

	while (1) {
		CPRINTS("LB running cur_seq %d %s. prev_seq %d %s",
			st.cur_seq, lightbar_cmds[st.cur_seq].string,
			st.prev_seq, lightbar_cmds[st.prev_seq].string);
		next_seq = lightbar_cmds[st.cur_seq].sequence();
		if (next_seq) {
			CPRINTS("LB cur_seq %d %s returned pending msg %d %s",
				st.cur_seq, lightbar_cmds[st.cur_seq].string,
				next_seq, lightbar_cmds[next_seq].string);
			if (st.cur_seq != next_seq) {
				if (is_normal_sequence(st.cur_seq))
					st.prev_seq = st.cur_seq;
				st.cur_seq = next_seq;
			}
		} else {
			CPRINTS("LB cur_seq %d %s returned value 0",
				st.cur_seq, lightbar_cmds[st.cur_seq].string);
			switch (st.cur_seq) {
			case LIGHTBAR_S5S3:
				st.cur_seq = LIGHTBAR_S3;
				break;
			case LIGHTBAR_S3S0:
				st.cur_seq = LIGHTBAR_S0;
				break;
			case LIGHTBAR_S0S3:
				st.cur_seq = LIGHTBAR_S3;
				break;
			case LIGHTBAR_S3S5:
				st.cur_seq = LIGHTBAR_S5;
				break;
			case LIGHTBAR_STOP:
			case LIGHTBAR_RUN:
			case LIGHTBAR_ERROR:
			case LIGHTBAR_KONAMI:
			case LIGHTBAR_TAP:
			case LIGHTBAR_PROGRAM:
				st.cur_seq = st.prev_seq;
			default:
				break;
			}
		}
	}
}

/* Function to request a preset sequence from the lightbar task. */
void lightbar_sequence_f(enum lightbar_sequence num, const char *f)
{
	if (num > 0 && num < LIGHTBAR_NUM_SEQUENCES) {
		CPRINTS("LB %s() requests %d %s", f, num,
			lightbar_cmds[num].string);
		pending_msg = num;
		task_set_event(TASK_ID_LIGHTBAR,
			       TASK_EVENT_CUSTOM(PENDING_MSG),
			       0);
	} else
		CPRINTS("LB %s() requests %d - ignored", f, num);
}

/****************************************************************************/
/* Get notifications from other parts of the system */

static uint8_t manual_suspend_control;

static void lightbar_startup(void)
{
	manual_suspend_control = 0;
	lightbar_sequence(LIGHTBAR_S5S3);
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, lightbar_startup, HOOK_PRIO_DEFAULT);

static void lightbar_resume(void)
{
	if (!manual_suspend_control)
		lightbar_sequence(LIGHTBAR_S3S0);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, lightbar_resume, HOOK_PRIO_DEFAULT);

static void lightbar_suspend(void)
{
	if (!manual_suspend_control)
		lightbar_sequence(LIGHTBAR_S0S3);
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, lightbar_suspend, HOOK_PRIO_DEFAULT);

static void lightbar_shutdown(void)
{
	lightbar_sequence(LIGHTBAR_S3S5);
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, lightbar_shutdown, HOOK_PRIO_DEFAULT);

/****************************************************************************/
/* Host commands via LPC bus */
/****************************************************************************/

static int lpc_cmd_lightbar(struct host_cmd_handler_args *args)
{
	const struct ec_params_lightbar *in = args->params;
	struct ec_response_lightbar *out = args->response;
	int rv;

	switch (in->cmd) {
	case LIGHTBAR_CMD_DUMP:
		lb_hc_cmd_dump(out);
		args->response_size = sizeof(out->dump);
		break;
	case LIGHTBAR_CMD_OFF:
		lb_off();
		break;
	case LIGHTBAR_CMD_ON:
		lb_on();
		break;
	case LIGHTBAR_CMD_INIT:
		lb_init();
		break;
	case LIGHTBAR_CMD_SET_BRIGHTNESS:
		lb_set_brightness(in->set_brightness.num);
		break;
	case LIGHTBAR_CMD_GET_BRIGHTNESS:
		out->get_brightness.num = lb_get_brightness();
		args->response_size = sizeof(out->get_brightness);
		break;
	case LIGHTBAR_CMD_SEQ:
		lightbar_sequence(in->seq.num);
		break;
	case LIGHTBAR_CMD_REG:
		lb_hc_cmd_reg(in);
		break;
	case LIGHTBAR_CMD_SET_RGB:
		lb_set_rgb(in->set_rgb.led,
			   in->set_rgb.red,
			   in->set_rgb.green,
			   in->set_rgb.blue);
		break;
	case LIGHTBAR_CMD_GET_RGB:
		rv = lb_get_rgb(in->get_rgb.led,
				&out->get_rgb.red,
				&out->get_rgb.green,
				&out->get_rgb.blue);
		if (rv == EC_RES_SUCCESS)
			args->response_size = sizeof(out->get_rgb);
		return rv;
	case LIGHTBAR_CMD_GET_SEQ:
		out->get_seq.num = st.cur_seq;
		args->response_size = sizeof(out->get_seq);
		break;
	case LIGHTBAR_CMD_DEMO:
		demo_mode = in->demo.num ? 1 : 0;
		CPRINTS("LB_demo %d", demo_mode);
		break;
	case LIGHTBAR_CMD_GET_DEMO:
		out->get_demo.num = demo_mode;
		args->response_size = sizeof(out->get_demo);
		break;
	case LIGHTBAR_CMD_GET_PARAMS_V0:
		CPRINTS("LB_get_params_v0 not supported");
		return EC_RES_INVALID_VERSION;
		break;
	case LIGHTBAR_CMD_SET_PARAMS_V0:
		CPRINTS("LB_set_params_v0 not supported");
		return EC_RES_INVALID_VERSION;
		break;
	case LIGHTBAR_CMD_GET_PARAMS_V1:
		CPRINTS("LB_get_params_v1");
		memcpy(&out->get_params_v1, &st.p, sizeof(st.p));
		args->response_size = sizeof(out->get_params_v1);
		break;
	case LIGHTBAR_CMD_SET_PARAMS_V1:
		CPRINTS("LB_set_params_v1");
		memcpy(&st.p, &in->set_params_v1, sizeof(st.p));
		break;
	case LIGHTBAR_CMD_SET_PROGRAM:
		CPRINTS("LB_set_program");
		memcpy(&next_prog,
		       &in->set_program,
		       sizeof(struct lightbar_program));
		break;
	case LIGHTBAR_CMD_VERSION:
		CPRINTS("LB_version");
		out->version.num = LIGHTBAR_IMPLEMENTATION_VERSION;
		out->version.flags = LIGHTBAR_IMPLEMENTATION_FLAGS;
		args->response_size = sizeof(out->version);
		break;
	case LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL:
		CPRINTS("LB_manual_suspend_ctrl");
		manual_suspend_control = in->manual_suspend_ctrl.enable;
		break;
	case LIGHTBAR_CMD_SUSPEND:
		CPRINTS("LB_suspend");
		lightbar_sequence(LIGHTBAR_S0S3);
		break;
	case LIGHTBAR_CMD_RESUME:
		CPRINTS("LB_resume");
		lightbar_sequence(LIGHTBAR_S3S0);
		break;
	case LIGHTBAR_CMD_GET_PARAMS_V2_TIMING:
		CPRINTS("LB_get_params_v2_timing");
		memcpy(&out->get_params_v2_timing,
		       &st.p_v2.timing,
		       sizeof(st.p_v2.timing));
		args->response_size = sizeof(out->get_params_v2_timing);
		break;
	case LIGHTBAR_CMD_SET_PARAMS_V2_TIMING:
		CPRINTS("LB_set_params_v2_timing");
		memcpy(&st.p_v2.timing,
		       &in->set_v2par_timing,
		       sizeof(struct lightbar_params_v2_timing));
		break;
	case LIGHTBAR_CMD_GET_PARAMS_V2_TAP:
		CPRINTS("LB_get_params_v2_tap");
		memcpy(&out->get_params_v2_tap,
		       &st.p_v2.tap,
		       sizeof(struct lightbar_params_v2_tap));
		args->response_size = sizeof(out->get_params_v2_tap);
		break;
	case LIGHTBAR_CMD_SET_PARAMS_V2_TAP:
		CPRINTS("LB_set_params_v2_tap");
		memcpy(&st.p_v2.tap,
		       &in->set_v2par_tap,
		       sizeof(struct lightbar_params_v2_tap));
		break;
	case LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION:
		CPRINTS("LB_get_params_v2_oscillation");
		memcpy(&out->get_params_v2_osc, &st.p_v2.osc,
		       sizeof(struct lightbar_params_v2_oscillation));
		args->response_size = sizeof(out->get_params_v2_osc);
		break;
	case LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION:
		CPRINTS("LB_set_params_v2_oscillation");
		memcpy(&st.p_v2.osc,
		       &in->set_v2par_osc,
		       sizeof(struct lightbar_params_v2_oscillation));
		break;
	case LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS:
		CPRINTS("LB_get_params_v2_brightness");
		memcpy(&out->get_params_v2_bright,
		       &st.p_v2.bright,
		       sizeof(struct lightbar_params_v2_brightness));
		args->response_size = sizeof(out->get_params_v2_bright);
		break;
	case LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS:
		CPRINTS("LB_set_params_v2_brightness");
		memcpy(&st.p_v2.bright,
		       &in->set_v2par_bright,
		       sizeof(struct lightbar_params_v2_brightness));
		break;
	case LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS:
		CPRINTS("LB_get_params_v2_thlds");
		memcpy(&out->get_params_v2_thlds,
		       &st.p_v2.thlds,
		       sizeof(struct lightbar_params_v2_thresholds));
		args->response_size = sizeof(out->get_params_v2_thlds);
		break;
	case LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS:
		CPRINTS("LB_set_params_v2_thlds");
		memcpy(&st.p_v2.thlds,
		       &in->set_v2par_thlds,
		       sizeof(struct lightbar_params_v2_thresholds));
		break;
	case LIGHTBAR_CMD_GET_PARAMS_V2_COLORS:
		CPRINTS("LB_get_params_v2_colors");
		memcpy(&out->get_params_v2_colors,
		       &st.p_v2.colors,
		       sizeof(struct lightbar_params_v2_colors));
		args->response_size = sizeof(out->get_params_v2_colors);
		break;
	case LIGHTBAR_CMD_SET_PARAMS_V2_COLORS:
		CPRINTS("LB_set_params_v2_colors");
		memcpy(&st.p_v2.colors,
		       &in->set_v2par_colors,
		       sizeof(struct lightbar_params_v2_colors));
		break;
	default:
		CPRINTS("LB bad cmd 0x%x", in->cmd);
		return EC_RES_INVALID_PARAM;
	}

	return EC_RES_SUCCESS;
}

DECLARE_HOST_COMMAND(EC_CMD_LIGHTBAR_CMD,
		     lpc_cmd_lightbar,
		     EC_VER_MASK(0));

/****************************************************************************/
/* EC console commands */
/****************************************************************************/

#ifdef CONFIG_CONSOLE_CMDHELP
static int help(const char *cmd)
{
	ccprintf("Usage:\n");
	ccprintf("  %s                       - dump all regs\n", cmd);
	ccprintf("  %s off                   - enter standby\n", cmd);
	ccprintf("  %s on                    - leave standby\n", cmd);
	ccprintf("  %s init                  - load default vals\n", cmd);
	ccprintf("  %s brightness [NUM]      - set intensity (0-ff)\n", cmd);
	ccprintf("  %s seq [NUM|SEQUENCE]    - run given pattern"
		 " (no arg for list)\n", cmd);
	ccprintf("  %s CTRL REG VAL          - set LED controller regs\n", cmd);
	ccprintf("  %s LED RED GREEN BLUE    - set color manually"
		 " (LED=%d for all)\n", cmd, NUM_LEDS);
	ccprintf("  %s LED                   - get current LED color\n", cmd);
	ccprintf("  %s demo [0|1]            - turn demo mode on & off\n", cmd);
#ifdef LIGHTBAR_SIMULATION
	ccprintf("  %s program filename      - load lightbyte program\n", cmd);
#endif
	ccprintf("  %s version               - show current version\n", cmd);
	return EC_SUCCESS;
}
#endif

static uint8_t find_msg_by_name(const char *str)
{
	uint8_t i;
	for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
		if (!strcasecmp(str, lightbar_cmds[i].string))
			return i;

	return LIGHTBAR_NUM_SEQUENCES;
}

static void show_msg_names(void)
{
	int i;
	ccprintf("Sequences:");
	for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
		ccprintf(" %s", lightbar_cmds[i].string);
	ccprintf("\nCurrent = 0x%x %s\n", st.cur_seq,
		 lightbar_cmds[st.cur_seq].string);
}

static int command_lightbar(int argc, char **argv)
{
	int i;
	uint8_t num, led, r = 0, g = 0, b = 0;
	struct ec_response_lightbar out;
	char *e;

	if (argc == 1) {			/* no args = dump 'em all */
		lb_hc_cmd_dump(&out);
		for (i = 0; i < ARRAY_SIZE(out.dump.vals); i++)
			ccprintf(" %02x     %02x     %02x\n",
				 out.dump.vals[i].reg,
				 out.dump.vals[i].ic0,
				 out.dump.vals[i].ic1);

		return EC_SUCCESS;
	}

	if (!strcasecmp(argv[1], "init")) {
		lb_init();
		return EC_SUCCESS;
	}

	if (!strcasecmp(argv[1], "off")) {
		lb_off();
		return EC_SUCCESS;
	}

	if (!strcasecmp(argv[1], "on")) {
		lb_on();
		return EC_SUCCESS;
	}

	if (!strcasecmp(argv[1], "version")) {
		ccprintf("version %d flags 0x%x\n",
			 LIGHTBAR_IMPLEMENTATION_VERSION,
			 LIGHTBAR_IMPLEMENTATION_FLAGS);
		return EC_SUCCESS;
	}

	if (!strcasecmp(argv[1], "brightness")) {
		if (argc > 2) {
			num = 0xff & strtoi(argv[2], &e, 16);
			lb_set_brightness(num);
		}
		ccprintf("brightness is %02x\n", lb_get_brightness());
		return EC_SUCCESS;
	}

	if (!strcasecmp(argv[1], "demo")) {
		if (argc > 2) {
			if (!strcasecmp(argv[2], "on") ||
			    argv[2][0] == '1')
				demo_mode = 1;
			else if (!strcasecmp(argv[2], "off") ||
				 argv[2][0] == '0')
				demo_mode = 0;
			else
				return EC_ERROR_PARAM1;
		}
		ccprintf("demo mode is %s\n", demo_mode ? "on" : "off");
		return EC_SUCCESS;
	}

	if (!strcasecmp(argv[1], "seq")) {
		if (argc == 2) {
			show_msg_names();
			return 0;
		}
		num = 0xff & strtoi(argv[2], &e, 16);
		if (*e)
			num = find_msg_by_name(argv[2]);
		if (num >= LIGHTBAR_NUM_SEQUENCES)
			return EC_ERROR_PARAM2;
		if (argc > 3)			/* for testing TAP direction */
			force_dir = strtoi(argv[3], 0, 0);
		lightbar_sequence(num);
		return EC_SUCCESS;
	}

#ifdef LIGHTBAR_SIMULATION
	/* Load a program. */
	if (argc >= 3 && !strcasecmp(argv[1], "program")) {
		return lb_load_program(argv[2], &next_prog);
	}
#endif

	if (argc == 4) {
		struct ec_params_lightbar in;
		in.reg.ctrl = strtoi(argv[1], &e, 16);
		in.reg.reg = strtoi(argv[2], &e, 16);
		in.reg.value = strtoi(argv[3], &e, 16);
		lb_hc_cmd_reg(&in);
		return EC_SUCCESS;
	}

	if (argc == 5) {
		led = strtoi(argv[1], &e, 16);
		r = strtoi(argv[2], &e, 16);
		g = strtoi(argv[3], &e, 16);
		b = strtoi(argv[4], &e, 16);
		lb_set_rgb(led, r, g, b);
		return EC_SUCCESS;
	}

	/* Only thing left is to try to read an LED value */
	num = strtoi(argv[1], &e, 16);
	if (!(e && *e)) {
		if (num >= NUM_LEDS) {
			for (i = 0; i < NUM_LEDS; i++) {
				lb_get_rgb(i, &r, &g, &b);
				ccprintf("%x: %02x %02x %02x\n", i, r, g, b);
			}
		} else {
			lb_get_rgb(num, &r, &g, &b);
			ccprintf("%02x %02x %02x\n", r, g, b);
		}
		return EC_SUCCESS;
	}


#ifdef CONFIG_CONSOLE_CMDHELP
	help(argv[0]);
#endif

	return EC_ERROR_INVAL;
}
DECLARE_CONSOLE_COMMAND(lightbar, command_lightbar,
			"[help | COMMAND [ARGS]]",
			"Get/set lightbar state",
			NULL);