1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
|
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Motion sense module to read from various motion sensors. */
#include "accelgyro.h"
#include "atomic.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "gesture.h"
#include "hooks.h"
#include "host_command.h"
#include "hwtimer.h"
#include "lid_angle.h"
#include "lightbar.h"
#include "math_util.h"
#include "mkbp_event.h"
#include "motion_sense.h"
#include "motion_lid.h"
#include "power.h"
#include "queue.h"
#include "tablet_mode.h"
#include "timer.h"
#include "task.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_MOTION_SENSE, outstr)
#define CPRINTS(format, args...) cprints(CC_MOTION_SENSE, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_MOTION_SENSE, format, ## args)
#ifdef CONFIG_ORIENTATION_SENSOR
/*
* Orientation mode vectors, must match sequential ordering of
* known orientations from enum motionsensor_orientation
*/
const intv3_t orientation_modes[] = {
[MOTIONSENSE_ORIENTATION_LANDSCAPE] = { 0, -1, 0 },
[MOTIONSENSE_ORIENTATION_PORTRAIT] = { 1, 0, 0 },
[MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT] = { -1, 0, 0 },
[MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE] = { 0, 1, 0 },
};
#endif
/*
* Sampling interval for measuring acceleration and calculating lid angle.
*/
test_export_static unsigned int motion_interval;
/* Delay between FIFO interruption. */
static unsigned int motion_int_interval;
/* Minimum time in between running motion sense task loop. */
unsigned int motion_min_interval = CONFIG_MOTION_MIN_SENSE_WAIT_TIME * MSEC;
#ifdef CONFIG_CMD_ACCEL_INFO
static int accel_disp;
#endif
#define SENSOR_ACTIVE(_sensor) (sensor_active & (_sensor)->active_mask)
#if defined(CONFIG_HOSTCMD_X86) || defined(TEST_MOTION_LID)
#define UPDATE_HOST_MEM_MAP
#endif
/*
* Adjustment in us to ec rate when calculating interrupt interval:
* To be sure the EC will send an interrupt even if it finishes processing
* events slightly earlier than the previous period.
*/
#define MOTION_SENSOR_INT_ADJUSTMENT_US 10
/*
* Mutex to protect sensor values between host command task and
* motion sense task:
* When we process CMD_DUMP, we want to be sure the motion sense
* task is not updating the sensor values at the same time.
*/
static struct mutex g_sensor_mutex;
/*
* Current power level (S0, S3, S5, ...)
*/
test_export_static enum chipset_state_mask sensor_active;
#ifdef CONFIG_ACCEL_SPOOF_MODE
static void print_spoof_mode_status(int id);
#endif /* defined(CONFIG_ACCEL_SPOOF_MODE) */
#ifdef CONFIG_ACCEL_FIFO
/* Need to wake up the AP */
static int wake_up_needed;
/* Number of element the AP should collect */
static int fifo_queue_count;
static int fifo_int_enabled;
struct queue motion_sense_fifo = QUEUE_NULL(CONFIG_ACCEL_FIFO,
struct ec_response_motion_sensor_data);
static int motion_sense_fifo_lost;
/*
* Do not use this function directly if you just want to add sensor data, use
* motion_sense_fifo_add_data instead to get a proper timestamp too.
*/
static void motion_sense_fifo_add_unit(
struct ec_response_motion_sensor_data *data,
struct motion_sensor_t *sensor,
int valid_data)
{
struct ec_response_motion_sensor_data vector;
int i;
mutex_lock(&g_sensor_mutex);
if (queue_space(&motion_sense_fifo) == 0) {
queue_remove_unit(&motion_sense_fifo, &vector);
motion_sense_fifo_lost++;
motion_sensors[vector.sensor_num].lost++;
}
for (i = 0; i < valid_data; i++)
sensor->xyz[i] = data->data[i];
/* For valid sensors, check if AP really needs this data */
if (valid_data) {
int removed;
if (sensor->oversampling_ratio == 0) {
mutex_unlock(&g_sensor_mutex);
return;
}
removed = sensor->oversampling++;
sensor->oversampling %= sensor->oversampling_ratio;
if (removed != 0) {
mutex_unlock(&g_sensor_mutex);
return;
}
}
mutex_unlock(&g_sensor_mutex);
if (data->flags & MOTIONSENSE_SENSOR_FLAG_WAKEUP) {
wake_up_needed = 1;
}
#ifdef CONFIG_TABLET_MODE
data->flags |= (tablet_get_mode() ?
MOTIONSENSE_SENSOR_FLAG_TABLET_MODE : 0);
#endif
mutex_lock(&g_sensor_mutex);
queue_add_unit(&motion_sense_fifo, data);
mutex_unlock(&g_sensor_mutex);
}
static void motion_sense_insert_flush(struct motion_sensor_t *sensor)
{
struct ec_response_motion_sensor_data vector;
vector.flags = MOTIONSENSE_SENSOR_FLAG_FLUSH |
MOTIONSENSE_SENSOR_FLAG_TIMESTAMP;
vector.timestamp = __hw_clock_source_read();
vector.sensor_num = sensor - motion_sensors;
motion_sense_fifo_add_unit(&vector, sensor, 0);
}
static void motion_sense_insert_timestamp(uint32_t timestamp)
{
struct ec_response_motion_sensor_data vector;
vector.flags = MOTIONSENSE_SENSOR_FLAG_TIMESTAMP;
vector.timestamp = timestamp;
vector.sensor_num = 0;
motion_sense_fifo_add_unit(&vector, NULL, 0);
}
void motion_sense_fifo_add_data(struct ec_response_motion_sensor_data *data,
struct motion_sensor_t *sensor,
int valid_data,
uint32_t time) {
motion_sense_insert_timestamp(time);
motion_sense_fifo_add_unit(data, sensor, valid_data);
}
static void motion_sense_get_fifo_info(
struct ec_response_motion_sense_fifo_info *fifo_info)
{
fifo_info->size = motion_sense_fifo.buffer_units;
mutex_lock(&g_sensor_mutex);
fifo_info->count = fifo_queue_count;
fifo_info->total_lost = motion_sense_fifo_lost;
mutex_unlock(&g_sensor_mutex);
fifo_info->timestamp = mkbp_last_event_time;
}
#endif
static inline int motion_sensor_in_forced_mode(
const struct motion_sensor_t *sensor)
{
#ifdef CONFIG_ACCEL_FORCE_MODE_MASK
/* Sensor not in force mode, its irq_handler is getting data. */
if (!(CONFIG_ACCEL_FORCE_MODE_MASK & (1 << (sensor - motion_sensors))))
return 0;
else
return 1;
#else
return 0;
#endif
}
/* Minimal amount of time since last collection before triggering a new one */
static inline int motion_sensor_time_to_read(const timestamp_t *ts,
const struct motion_sensor_t *sensor)
{
int rate_mhz = sensor->drv->get_data_rate(sensor);
if (rate_mhz == 0)
return 0;
/*
* converting from mHz to us.
* If within 95% of the time, check sensor.
*/
return time_after(ts->le.lo,
sensor->last_collection + SECOND * 950 / rate_mhz);
}
static enum sensor_config motion_sense_get_ec_config(void)
{
switch (sensor_active) {
case SENSOR_ACTIVE_S0:
return SENSOR_CONFIG_EC_S0;
case SENSOR_ACTIVE_S3:
return SENSOR_CONFIG_EC_S3;
case SENSOR_ACTIVE_S5:
return SENSOR_CONFIG_EC_S5;
default:
CPRINTS("get_ec_config: Invalid active state: %x",
sensor_active);
return SENSOR_CONFIG_MAX;
}
}
/* motion_sense_set_data_rate
*
* Set the sensor data rate. It is altered when the AP change the data
* rate or when the power state changes.
*/
int motion_sense_set_data_rate(struct motion_sensor_t *sensor)
{
int roundup, ap_odr_mhz = 0, ec_odr_mhz, odr, ret;
enum sensor_config config_id;
timestamp_t ts = get_time();
/* We assume the sensor is initialized */
/* Check the AP setting first. */
if (sensor_active != SENSOR_ACTIVE_S5)
ap_odr_mhz = BASE_ODR(sensor->config[SENSOR_CONFIG_AP].odr);
/* check if the EC set the sensor ODR at a higher frequency */
config_id = motion_sense_get_ec_config();
ec_odr_mhz = BASE_ODR(sensor->config[config_id].odr);
if (ec_odr_mhz > ap_odr_mhz) {
odr = ec_odr_mhz;
} else {
odr = ap_odr_mhz;
config_id = SENSOR_CONFIG_AP;
}
roundup = !!(sensor->config[config_id].odr & ROUND_UP_FLAG);
ret = sensor->drv->set_data_rate(sensor, odr, roundup);
if (ret)
return ret;
#ifdef CONFIG_CONSOLE_VERBOSE
CPRINTS("%s ODR: %d - roundup %d from config %d [AP %d]",
sensor->name, odr, roundup, config_id,
BASE_ODR(sensor->config[SENSOR_CONFIG_AP].odr));
#else
CPRINTS("%c%d ODR %d rup %d cfg %d AP %d",
sensor->name[0], sensor->type, odr, roundup, config_id,
BASE_ODR(sensor->config[SENSOR_CONFIG_AP].odr));
#endif
mutex_lock(&g_sensor_mutex);
if (ap_odr_mhz)
/*
* In case the AP want to run the sensors faster than it can,
* be sure we don't see the ratio to 0.
*/
sensor->oversampling_ratio = MAX(1,
sensor->drv->get_data_rate(sensor) / ap_odr_mhz);
else
sensor->oversampling_ratio = 0;
/*
* Reset last collection: the last collection may be so much in the past
* it may appear to be in the future.
*/
sensor->last_collection = ts.le.lo;
sensor->oversampling = 0;
mutex_unlock(&g_sensor_mutex);
return 0;
}
static int motion_sense_set_ec_rate_from_ap(
const struct motion_sensor_t *sensor,
unsigned int new_rate_us)
{
int odr_mhz = sensor->drv->get_data_rate(sensor);
if (new_rate_us == 0)
return 0;
if (motion_sensor_in_forced_mode(sensor))
/*
* AP EC sampling rate does not matter: we will collect at the
* requested sensor frequency.
*/
goto end_set_ec_rate_from_ap;
if (odr_mhz == 0)
goto end_set_ec_rate_from_ap;
/*
* If the EC collection rate is close to the sensor data rate,
* given variation from the EC scheduler, it is possible that a sensor
* will not present any measurement for a given time slice, and then 2
* measurement for the next. That will create a large interval between
* 2 measurements.
* To prevent that, increase the EC period by 5% to be sure to get at
* least one measurement at every collection time.
* We will apply that correction only if the ec rate is within 10% of
* the data rate.
*/
if (SECOND * 1100 / odr_mhz > new_rate_us)
new_rate_us = new_rate_us / 100 * 105;
end_set_ec_rate_from_ap:
return MAX(new_rate_us, motion_min_interval);
}
/*
* motion_sense_select_ec_rate
*
* Calculate the ec_rate for a given sensor.
* - sensor: sensor to use
* - config_id: determine the requester (AP or EC).
* - interrupt:
* If interrupt is set: return the sampling rate requested by AP or EC.
* If interrupt is not set and the sensor is in forced mode,
* we return the rate needed to probe the sensor at the right ODR.
* otherwise return the sampling rate requested by AP or EC.
*
* return rate in us.
*/
static int motion_sense_select_ec_rate(
const struct motion_sensor_t *sensor,
enum sensor_config config_id,
int interrupt)
{
if (interrupt == 0 && motion_sensor_in_forced_mode(sensor)) {
int rate_mhz = BASE_ODR(sensor->config[config_id].odr);
/* we have to run ec at the sensor frequency rate.*/
if (rate_mhz > 0)
return SECOND * 1000 / rate_mhz;
else
return 0;
} else {
return sensor->config[config_id].ec_rate;
}
}
/* motion_sense_ec_rate
*
* Calculate the sensor ec rate. It will be use to set the motion task polling
* rate.
*
* Return the EC rate, in us.
*/
static int motion_sense_ec_rate(struct motion_sensor_t *sensor)
{
int ec_rate = 0, ec_rate_from_cfg;
/* Check the AP setting first. */
if (sensor_active != SENSOR_ACTIVE_S5)
ec_rate = motion_sense_select_ec_rate(
sensor, SENSOR_CONFIG_AP, 0);
ec_rate_from_cfg = motion_sense_select_ec_rate(
sensor, motion_sense_get_ec_config(), 0);
if (ec_rate_from_cfg != 0)
if (ec_rate == 0 || ec_rate_from_cfg < ec_rate)
ec_rate = ec_rate_from_cfg;
return ec_rate;
}
/*
* motion_sense_set_motion_intervals
*
* Set the wake up interval for the motion sense thread.
* It is set to the highest frequency one of the sensors need to be polled at.
*
* Note: Not static to be tested.
*/
static int motion_sense_set_motion_intervals(void)
{
int i, sensor_ec_rate, ec_rate = 0, ec_int_rate = 0;
struct motion_sensor_t *sensor;
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
/*
* If the sensor is sleeping, no need to check it periodically.
*/
if ((sensor->state != SENSOR_INITIALIZED) ||
(sensor->drv->get_data_rate(sensor) == 0))
continue;
sensor_ec_rate = motion_sense_ec_rate(sensor);
if (sensor_ec_rate == 0)
continue;
if (ec_rate == 0 || sensor_ec_rate < ec_rate)
ec_rate = sensor_ec_rate;
sensor_ec_rate = motion_sense_select_ec_rate(
sensor, SENSOR_CONFIG_AP, 1);
if (ec_int_rate == 0 ||
(sensor_ec_rate && sensor_ec_rate < ec_int_rate))
ec_int_rate = sensor_ec_rate;
}
motion_interval = ec_rate;
motion_int_interval =
MAX(0, ec_int_rate - MOTION_SENSOR_INT_ADJUSTMENT_US);
/*
* Wake up the motion sense task: we want to sensor task to take
* in account the new period right away.
*/
task_wake(TASK_ID_MOTIONSENSE);
return motion_interval;
}
static inline int motion_sense_init(struct motion_sensor_t *sensor)
{
int ret, cnt = 3;
/* By default, report the actual sensor values. */
sensor->in_spoof_mode = 0;
/* Initialize accelerometers. */
do {
ret = sensor->drv->init(sensor);
} while ((ret != EC_SUCCESS) && (--cnt > 0));
if (ret != EC_SUCCESS) {
sensor->state = SENSOR_INIT_ERROR;
} else {
sensor->state = SENSOR_INITIALIZED;
motion_sense_set_data_rate(sensor);
}
return ret;
}
/*
* sensor_init_done
*
* Called by init routine of each sensors when successful.
*/
int sensor_init_done(const struct motion_sensor_t *s)
{
int ret;
ret = s->drv->set_range(s, s->default_range, 0);
if (ret == EC_RES_SUCCESS) {
#ifdef CONFIG_CONSOLE_VERBOSE
CPRINTS("%s: MS Done Init type:0x%X range:%d",
s->name, s->type, s->drv->get_range(s));
#else
CPRINTS("%c%d InitDone r:%d", s->name[0], s->type,
s->drv->get_range(s));
#endif
}
return ret;
}
/*
* motion_sense_switch_sensor_rate
*
* Suspend all sensors that are not needed.
* Mark them as uninitialized, they will lose power and
* need to be initialized again.
*/
static void motion_sense_switch_sensor_rate(void)
{
int i, ret;
struct motion_sensor_t *sensor;
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
if (SENSOR_ACTIVE(sensor)) {
/* Initialize or just back the odr previously set. */
if (sensor->state == SENSOR_INITIALIZED) {
motion_sense_set_data_rate(sensor);
} else {
ret = motion_sense_init(sensor);
if (ret != EC_SUCCESS) {
CPRINTS("%s: %d: init failed: %d",
sensor->name, i, ret);
#if defined(CONFIG_TABLET_MODE) && defined(CONFIG_LID_ANGLE)
/*
* No tablet mode allowed if an accel
* is not working.
*/
if (i == CONFIG_LID_ANGLE_SENSOR_BASE ||
i == CONFIG_LID_ANGLE_SENSOR_LID) {
tablet_set_mode(0);
}
#endif
}
}
} else {
/* The sensors are being powered off */
if (sensor->state == SENSOR_INITIALIZED)
sensor->state = SENSOR_NOT_INITIALIZED;
}
}
motion_sense_set_motion_intervals();
}
DECLARE_DEFERRED(motion_sense_switch_sensor_rate);
static void motion_sense_shutdown(void)
{
int i;
struct motion_sensor_t *sensor;
#ifdef CONFIG_GESTURE_DETECTION_MASK
uint32_t enabled = 0, disabled, mask;
#endif
sensor_active = SENSOR_ACTIVE_S5;
for (i = 0; i < motion_sensor_count; i++) {
sensor = &motion_sensors[i];
/* Forget about changes made by the AP */
sensor->config[SENSOR_CONFIG_AP].odr = 0;
sensor->config[SENSOR_CONFIG_AP].ec_rate = 0;
}
motion_sense_switch_sensor_rate();
/* Forget activities set by the AP */
#ifdef CONFIG_GESTURE_DETECTION_MASK
mask = CONFIG_GESTURE_DETECTION_MASK;
while (mask) {
i = get_next_bit(&mask);
sensor = &motion_sensors[i];
if (sensor->state != SENSOR_INITIALIZED)
continue;
sensor->drv->list_activities(sensor,
&enabled, &disabled);
/* exclude double tap, it is used internally. */
enabled &= ~(1 << MOTIONSENSE_ACTIVITY_DOUBLE_TAP);
while (enabled) {
int activity = get_next_bit(&enabled);
sensor->drv->manage_activity(sensor, activity, 0, NULL);
}
/* Re-enable double tap in case AP disabled it */
sensor->drv->manage_activity(sensor,
MOTIONSENSE_ACTIVITY_DOUBLE_TAP, 1, NULL);
}
#endif
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, motion_sense_shutdown,
MOTION_SENSE_HOOK_PRIO);
static void motion_sense_suspend(void)
{
/*
* If we are coming from S5, don't enter suspend:
* We will go in SO almost immediately.
*/
if (sensor_active == SENSOR_ACTIVE_S5)
return;
sensor_active = SENSOR_ACTIVE_S3;
/*
* During shutdown sequence sensor rails can be powered down
* asynchronously to the EC hence EC cannot interlock the sensor
* states with the power down states. To avoid this issue, defer
* switching the sensors rate with a configurable delay if in S3.
* By the time deferred function is serviced, if the chipset is
* in S5 we can back out from switching the sensor rate.
*
* TODO: This does not fix the issue completely. It is mitigating
* some of the accesses when we're going from S0->S5 with a very
* brief stop in S3.
*/
hook_call_deferred(&motion_sense_switch_sensor_rate_data,
CONFIG_MOTION_SENSE_SUSPEND_DELAY_US);
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, motion_sense_suspend,
MOTION_SENSE_HOOK_PRIO);
static void motion_sense_resume(void)
{
sensor_active = SENSOR_ACTIVE_S0;
hook_call_deferred(&motion_sense_switch_sensor_rate_data,
CONFIG_MOTION_SENSE_RESUME_DELAY_US);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, motion_sense_resume,
MOTION_SENSE_HOOK_PRIO);
static void motion_sense_startup(void)
{
/*
* If the AP is already in S0, call the resume hook now.
* We may initialize the sensor 2 times (once in RO, another time in
* RW), but it may be necessary if the init sequence has changed.
*/
if (chipset_in_state(SENSOR_ACTIVE_S0_S3_S5))
motion_sense_shutdown();
if (chipset_in_state(SENSOR_ACTIVE_S0_S3))
motion_sense_suspend();
if (chipset_in_state(SENSOR_ACTIVE_S0))
motion_sense_resume();
}
DECLARE_HOOK(HOOK_INIT, motion_sense_startup,
MOTION_SENSE_HOOK_PRIO);
/* Write to LPC status byte to represent that accelerometers are present. */
static inline void set_present(uint8_t *lpc_status)
{
*lpc_status |= EC_MEMMAP_ACC_STATUS_PRESENCE_BIT;
}
#ifdef UPDATE_HOST_MEM_MAP
/* Update/Write LPC data */
static inline void update_sense_data(uint8_t *lpc_status, int *psample_id)
{
int s, d, i;
uint16_t *lpc_data = (uint16_t *)host_get_memmap(EC_MEMMAP_ACC_DATA);
#if (!defined HAS_TASK_ALS) && (defined CONFIG_ALS)
uint16_t *lpc_als = (uint16_t *)host_get_memmap(EC_MEMMAP_ALS);
#endif
struct motion_sensor_t *sensor;
/*
* Set the busy bit before writing the sensor data. Increment
* the counter and clear the busy bit after writing the sensor
* data. On the host side, the host needs to make sure the busy
* bit is not set and that the counter remains the same before
* and after reading the data.
*/
*lpc_status |= EC_MEMMAP_ACC_STATUS_BUSY_BIT;
/*
* Copy sensor data to shared memory. Note that this code
* assumes little endian, which is what the host expects. Also,
* note that we share the lid angle calculation with host only
* for debugging purposes. The EC lid angle is an approximation
* with uncalibrated accelerometers. The AP calculates a separate,
* more accurate lid angle.
*/
#ifdef CONFIG_LID_ANGLE
lpc_data[0] = motion_lid_get_angle();
#else
lpc_data[0] = LID_ANGLE_UNRELIABLE;
#endif
/*
* The first 2 entries must be accelerometers, then gyroscope.
* If there is only one accel and one gyro, the entry for the second
* accel is skipped.
*/
for (s = 0, d = 0; d < 3 && s < motion_sensor_count; s++, d++) {
sensor = &motion_sensors[s];
if (sensor->type > MOTIONSENSE_TYPE_GYRO)
break;
else if (sensor->type == MOTIONSENSE_TYPE_GYRO)
d = 2;
for (i = X; i <= Z; i++)
lpc_data[1 + i + 3 * d] = sensor->xyz[i];
}
#if (!defined HAS_TASK_ALS) && (defined CONFIG_ALS)
for (i = 0; i < EC_ALS_ENTRIES && i < ALS_COUNT; i++)
lpc_als[i] = motion_als_sensors[i]->xyz[X];
#endif
/*
* Increment sample id and clear busy bit to signal we finished
* updating data.
*/
*psample_id = (*psample_id + 1) &
EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK;
*lpc_status = EC_MEMMAP_ACC_STATUS_PRESENCE_BIT | *psample_id;
}
#endif
static int motion_sense_read(struct motion_sensor_t *sensor)
{
if (sensor->state != SENSOR_INITIALIZED)
return EC_ERROR_UNKNOWN;
if (sensor->drv->get_data_rate(sensor) == 0)
return EC_ERROR_NOT_POWERED;
#ifdef CONFIG_ACCEL_SPOOF_MODE
/*
* If the sensor is in spoof mode, the readings are already present in
* spoof_xyz.
*/
if (sensor->in_spoof_mode)
return EC_SUCCESS;
#endif /* defined(CONFIG_ACCEL_SPOOF_MODE) */
/* Otherwise, read all raw X,Y,Z accelerations. */
return sensor->drv->read(sensor, sensor->raw_xyz);
}
static int motion_sense_process(struct motion_sensor_t *sensor,
uint32_t *event,
const timestamp_t *ts)
{
int ret = EC_SUCCESS;
#ifdef CONFIG_ACCEL_INTERRUPTS
if ((*event & TASK_EVENT_MOTION_INTERRUPT_MASK) &&
(sensor->drv->irq_handler != NULL)) {
ret = sensor->drv->irq_handler(sensor, event);
}
#endif
#ifdef CONFIG_ACCEL_FIFO
if (motion_sensor_in_forced_mode(sensor)) {
if (motion_sensor_time_to_read(ts, sensor)) {
struct ec_response_motion_sensor_data vector;
int *v = sensor->raw_xyz;
ret = motion_sense_read(sensor);
if (ret == EC_SUCCESS) {
vector.flags = 0;
vector.sensor_num = sensor - motion_sensors;
#ifdef CONFIG_ACCEL_SPOOF_MODE
if (sensor->in_spoof_mode)
v = sensor->spoof_xyz;
#endif /* defined(CONFIG_ACCEL_SPOOF_MODE) */
vector.data[X] = v[X];
vector.data[Y] = v[Y];
vector.data[Z] = v[Z];
motion_sense_fifo_add_data(&vector, sensor, 3,
__hw_clock_source_read());
}
sensor->last_collection = ts->le.lo;
} else {
ret = EC_ERROR_BUSY;
}
}
if (*event & TASK_EVENT_MOTION_FLUSH_PENDING) {
int flush_pending;
flush_pending = atomic_read_clear(&sensor->flush_pending);
for (; flush_pending > 0; flush_pending--) {
motion_sense_insert_flush(sensor);
}
}
#else
if (motion_sensor_in_forced_mode(sensor)) {
if (motion_sensor_time_to_read(ts, sensor)) {
/* Get latest data for local calculation */
ret = motion_sense_read(sensor);
sensor->last_collection = ts->le.lo;
} else {
ret = EC_ERROR_BUSY;
}
if (ret == EC_SUCCESS) {
mutex_lock(&g_sensor_mutex);
memcpy(sensor->xyz, sensor->raw_xyz,
sizeof(sensor->xyz));
mutex_unlock(&g_sensor_mutex);
}
}
#endif
return ret;
}
#ifdef CONFIG_ORIENTATION_SENSOR
enum motionsensor_orientation motion_sense_remap_orientation(
const struct motion_sensor_t *s,
enum motionsensor_orientation orientation)
{
enum motionsensor_orientation rotated_orientation;
const intv3_t *orientation_v;
intv3_t rotated_orientation_v;
if (orientation == MOTIONSENSE_ORIENTATION_UNKNOWN)
return MOTIONSENSE_ORIENTATION_UNKNOWN;
orientation_v = &orientation_modes[orientation];
rotate(*orientation_v, *s->rot_standard_ref, rotated_orientation_v);
rotated_orientation = ((2 * rotated_orientation_v[1] +
rotated_orientation_v[0] + 4) % 5);
return rotated_orientation;
}
#endif
#ifdef CONFIG_GESTURE_DETECTION
static void check_and_queue_gestures(uint32_t *event)
{
#ifdef CONFIG_ORIENTATION_SENSOR
const struct motion_sensor_t *sensor;
#endif
#ifdef CONFIG_GESTURE_SW_DETECTION
/* Run gesture recognition engine */
gesture_calc(event);
#endif
#ifdef CONFIG_GESTURE_SENSOR_BATTERY_TAP
if (*event & CONFIG_GESTURE_TAP_EVENT) {
#ifdef CONFIG_GESTURE_HOST_DETECTION
struct ec_response_motion_sensor_data vector;
/*
* Send events to the FIFO
* AP is ignoring double tap event, do no wake up and no
* automatic disable.
*/
vector.flags = 0;
vector.activity = MOTIONSENSE_ACTIVITY_DOUBLE_TAP;
vector.state = 1; /* triggered */
vector.sensor_num = MOTION_SENSE_ACTIVITY_SENSOR_ID;
motion_sense_fifo_add_data(&vector, NULL, 0,
__hw_clock_source_read());
#endif
/* Call board specific function to process tap */
sensor_board_proc_double_tap();
}
#endif
#ifdef CONFIG_GESTURE_SIGMO
if (*event & CONFIG_GESTURE_SIGMO_EVENT) {
struct motion_sensor_t *activity_sensor;
#ifdef CONFIG_GESTURE_HOST_DETECTION
struct ec_response_motion_sensor_data vector;
/* Send events to the FIFO */
vector.flags = MOTIONSENSE_SENSOR_FLAG_WAKEUP;
vector.activity = MOTIONSENSE_ACTIVITY_SIG_MOTION;
vector.state = 1; /* triggered */
vector.sensor_num = MOTION_SENSE_ACTIVITY_SENSOR_ID;
motion_sense_fifo_add_data(&vector, NULL, 0,
__hw_clock_source_read());
#endif
/* Disable further detection */
activity_sensor = &motion_sensors[CONFIG_GESTURE_SIGMO];
activity_sensor->drv->manage_activity(
activity_sensor,
MOTIONSENSE_ACTIVITY_SIG_MOTION,
0, NULL);
}
#endif
#ifdef CONFIG_ORIENTATION_SENSOR
sensor = &motion_sensors[LID_ACCEL];
if (SENSOR_ACTIVE(sensor) && (sensor->state == SENSOR_INITIALIZED)) {
struct ec_response_motion_sensor_data vector = {
.flags = 0,
.activity = MOTIONSENSE_ACTIVITY_ORIENTATION,
.sensor_num = MOTION_SENSE_ACTIVITY_SENSOR_ID,
};
mutex_lock(sensor->mutex);
if (ORIENTATION_CHANGED(sensor) && (GET_ORIENTATION(sensor) !=
MOTIONSENSE_ORIENTATION_UNKNOWN)) {
SET_ORIENTATION_UPDATED(sensor);
vector.state = GET_ORIENTATION(sensor);
motion_sense_fifo_add_data(&vector, NULL, 0,
__hw_clock_source_read());
#ifdef CONFIG_DEBUG_ORIENTATION
{
static const char * const mode_strs[] = {
"Landscape",
"Portrait",
"Inv_Portrait",
"Inv_Landscape",
"Unknown"
};
CPRINTS(mode_strs[GET_ORIENTATION(sensor)]);
}
#endif
}
mutex_unlock(sensor->mutex);
}
#endif
}
#endif
/*
* Motion Sense Task
* Requirement: motion_sensors[] are defined in board.c file.
* Two (minimum) Accelerometers:
* 1 in the A/B(lid, display) and 1 in the C/D(base, keyboard)
* Gyro Sensor (optional)
*/
void motion_sense_task(void *u)
{
int i, ret, wait_us;
timestamp_t ts_begin_task, ts_end_task;
uint32_t event = 0;
uint16_t ready_status;
struct motion_sensor_t *sensor;
#ifdef CONFIG_LID_ANGLE
const uint16_t lid_angle_sensors = ((1 << CONFIG_LID_ANGLE_SENSOR_BASE)|
(1 << CONFIG_LID_ANGLE_SENSOR_LID));
#endif
#ifdef CONFIG_ACCEL_FIFO
timestamp_t ts_last_int;
#endif
#ifdef UPDATE_HOST_MEM_MAP
int sample_id = 0;
uint8_t *lpc_status;
lpc_status = host_get_memmap(EC_MEMMAP_ACC_STATUS);
set_present(lpc_status);
#endif
#ifdef CONFIG_ACCEL_FIFO
ts_last_int = get_time();
#endif
while (1) {
ts_begin_task = get_time();
ready_status = 0;
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
/* if the sensor is active in the current power state */
if (SENSOR_ACTIVE(sensor)) {
if (sensor->state != SENSOR_INITIALIZED) {
continue;
}
ret = motion_sense_process(sensor, &event,
&ts_begin_task);
if (ret != EC_SUCCESS)
continue;
ready_status |= (1 << i);
}
}
#ifdef CONFIG_GESTURE_DETECTION
check_and_queue_gestures(&event);
#endif
#ifdef CONFIG_LID_ANGLE
/*
* Check to see that the sensors required for lid angle
* calculation are ready.
*/
ready_status &= lid_angle_sensors;
if (ready_status == lid_angle_sensors)
motion_lid_calc();
#endif
#ifdef CONFIG_CMD_ACCEL_INFO
if (accel_disp) {
CPRINTF("[%T event 0x%08x ", event);
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
CPRINTF("%s=%-5d, %-5d, %-5d ", sensor->name,
sensor->xyz[X],
sensor->xyz[Y],
sensor->xyz[Z]);
}
#ifdef CONFIG_LID_ANGLE
CPRINTF("a=%-4d", motion_lid_get_angle());
#endif
CPRINTF("]\n");
}
#endif
#ifdef UPDATE_HOST_MEM_MAP
update_sense_data(lpc_status, &sample_id);
#endif
ts_end_task = get_time();
#ifdef CONFIG_ACCEL_FIFO
/*
* Ask the host to flush the queue if
* - a flush event has been queued.
* - the queue is almost full,
* - we haven't done it for a while.
*/
if (wake_up_needed ||
event & (TASK_EVENT_MOTION_ODR_CHANGE |
TASK_EVENT_MOTION_FLUSH_PENDING) ||
queue_space(&motion_sense_fifo) < CONFIG_ACCEL_FIFO_THRES ||
(motion_int_interval > 0 &&
time_after(ts_end_task.le.lo,
ts_last_int.le.lo + motion_int_interval))) {
if ((event & TASK_EVENT_MOTION_FLUSH_PENDING) == 0)
motion_sense_insert_timestamp(
__hw_clock_source_read());
ts_last_int = ts_end_task;
/*
* Count the number of event the AP is allowed to
* collect.
*/
mutex_lock(&g_sensor_mutex);
fifo_queue_count = queue_count(&motion_sense_fifo);
mutex_unlock(&g_sensor_mutex);
#ifdef CONFIG_MKBP_EVENT
/*
* Send an event if we know we are in S0 and the kernel
* driver is listening, or the AP needs to be waken up.
* In the latter case, the driver pulls the event and
* will resume listening until it is suspended again.
*/
if ((fifo_int_enabled &&
sensor_active == SENSOR_ACTIVE_S0) ||
wake_up_needed) {
mkbp_send_event(EC_MKBP_EVENT_SENSOR_FIFO);
wake_up_needed = 0;
}
#endif
}
#endif
if (motion_interval > 0) {
/*
* Delay appropriately to keep sampling time
* consistent.
*/
wait_us = motion_interval -
(ts_end_task.val - ts_begin_task.val);
/* and it cannnot be negative */
wait_us = MAX(wait_us, 0);
/*
* Guarantee some minimum delay to allow other lower
* priority tasks to run.
*/
if (wait_us < motion_min_interval)
wait_us = motion_min_interval;
} else {
wait_us = -1;
}
event = task_wait_event(wait_us);
}
}
#ifdef CONFIG_ACCEL_FIFO
static int motion_sense_get_next_event(uint8_t *out)
{
union ec_response_get_next_data *data =
(union ec_response_get_next_data *)out;
/* out is not padded. It has one byte for the event type */
motion_sense_get_fifo_info(&data->sensor_fifo.info);
return sizeof(data->sensor_fifo);
}
DECLARE_EVENT_SOURCE(EC_MKBP_EVENT_SENSOR_FIFO, motion_sense_get_next_event);
#endif
/*****************************************************************************/
/* Host commands */
/* Function to map host sensor IDs to motion sensor. */
static struct motion_sensor_t
*host_sensor_id_to_real_sensor(int host_id)
{
struct motion_sensor_t *sensor;
if (host_id >= motion_sensor_count)
return NULL;
sensor = &motion_sensors[host_id];
/* if sensor is powered and initialized, return match */
if (SENSOR_ACTIVE(sensor) && (sensor->state == SENSOR_INITIALIZED))
return sensor;
/* If no match then the EC currently doesn't support ID received. */
return NULL;
}
static struct motion_sensor_t
*host_sensor_id_to_motion_sensor(int host_id)
{
#ifdef CONFIG_GESTURE_HOST_DETECTION
if (host_id == MOTION_SENSE_ACTIVITY_SENSOR_ID)
/*
* Return the info for the first sensor that
* support some gestures.
*/
return host_sensor_id_to_real_sensor(
__builtin_ctz(CONFIG_GESTURE_DETECTION_MASK));
#endif
return host_sensor_id_to_real_sensor(host_id);
}
static int host_cmd_motion_sense(struct host_cmd_handler_args *args)
{
const struct ec_params_motion_sense *in = args->params;
struct ec_response_motion_sense *out = args->response;
struct motion_sensor_t *sensor;
int i, ret = EC_RES_INVALID_PARAM, reported;
switch (in->cmd) {
case MOTIONSENSE_CMD_DUMP:
out->dump.module_flags =
(*(host_get_memmap(EC_MEMMAP_ACC_STATUS)) &
EC_MEMMAP_ACC_STATUS_PRESENCE_BIT) ?
MOTIONSENSE_MODULE_FLAG_ACTIVE : 0;
out->dump.sensor_count = ALL_MOTION_SENSORS;
args->response_size = sizeof(out->dump);
reported = MIN(ALL_MOTION_SENSORS, in->dump.max_sensor_count);
mutex_lock(&g_sensor_mutex);
for (i = 0; i < reported; i++) {
out->dump.sensor[i].flags =
MOTIONSENSE_SENSOR_FLAG_PRESENT;
if (i < motion_sensor_count) {
sensor = &motion_sensors[i];
/* casting from int to s16 */
out->dump.sensor[i].data[X] = sensor->xyz[X];
out->dump.sensor[i].data[Y] = sensor->xyz[Y];
out->dump.sensor[i].data[Z] = sensor->xyz[Z];
} else {
memset(out->dump.sensor[i].data, 0,
3 * sizeof(int16_t));
}
}
mutex_unlock(&g_sensor_mutex);
args->response_size += reported *
sizeof(struct ec_response_motion_sensor_data);
break;
case MOTIONSENSE_CMD_DATA:
sensor = host_sensor_id_to_real_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
out->data.flags = 0;
mutex_lock(&g_sensor_mutex);
out->data.data[X] = sensor->xyz[X];
out->data.data[Y] = sensor->xyz[Y];
out->data.data[Z] = sensor->xyz[Z];
mutex_unlock(&g_sensor_mutex);
args->response_size = sizeof(out->data);
break;
case MOTIONSENSE_CMD_INFO:
sensor = host_sensor_id_to_motion_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
#ifdef CONFIG_GESTURE_HOST_DETECTION
if (in->sensor_odr.sensor_num ==
MOTION_SENSE_ACTIVITY_SENSOR_ID)
out->info.type = MOTIONSENSE_TYPE_ACTIVITY;
else
#endif
out->info.type = sensor->type;
out->info.location = sensor->location;
out->info.chip = sensor->chip;
if (args->version >= 3) {
out->info_3.min_frequency = sensor->min_frequency;
out->info_3.max_frequency = sensor->max_frequency;
out->info_3.fifo_max_event_count = MAX_FIFO_EVENT_COUNT;
args->response_size = sizeof(out->info_3);
} else {
args->response_size = sizeof(out->info);
}
break;
case MOTIONSENSE_CMD_EC_RATE:
sensor = host_sensor_id_to_real_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
/*
* Set new sensor sampling rate when AP is on, if the data arg
* has a value.
*/
if (in->ec_rate.data != EC_MOTION_SENSE_NO_VALUE) {
sensor->config[SENSOR_CONFIG_AP].ec_rate =
motion_sense_set_ec_rate_from_ap(
sensor, in->ec_rate.data * MSEC);
/* Bound the new sampling rate. */
motion_sense_set_motion_intervals();
}
out->ec_rate.ret = motion_sense_ec_rate(sensor) / MSEC;
args->response_size = sizeof(out->ec_rate);
break;
case MOTIONSENSE_CMD_SENSOR_ODR:
/* Verify sensor number is valid. */
sensor = host_sensor_id_to_real_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
/* Set new data rate if the data arg has a value. */
if (in->sensor_odr.data != EC_MOTION_SENSE_NO_VALUE) {
#ifdef CONFIG_ACCEL_FIFO
/*
* To be sure timestamps are calculated properly,
* Send an event to have a timestamp inserted in the
* FIFO.
*/
motion_sense_insert_timestamp(__hw_clock_source_read());
#endif
sensor->config[SENSOR_CONFIG_AP].odr =
in->sensor_odr.data |
(in->sensor_odr.roundup ? ROUND_UP_FLAG : 0);
ret = motion_sense_set_data_rate(sensor);
if (ret != EC_SUCCESS)
return EC_RES_INVALID_PARAM;
#ifdef CONFIG_ACCEL_FIFO
/*
* The new ODR may suspend sensor, leaving samples
* in the FIFO. Flush it explicitly.
*/
task_set_event(TASK_ID_MOTIONSENSE,
TASK_EVENT_MOTION_ODR_CHANGE, 0);
#endif
/*
* If the sensor was suspended before, or now
* suspended, we have to recalculate the EC sampling
* rate
*/
motion_sense_set_motion_intervals();
}
out->sensor_odr.ret = sensor->drv->get_data_rate(sensor);
args->response_size = sizeof(out->sensor_odr);
break;
case MOTIONSENSE_CMD_SENSOR_RANGE:
/* Verify sensor number is valid. */
sensor = host_sensor_id_to_real_sensor(
in->sensor_range.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
/* Set new range if the data arg has a value. */
if (in->sensor_range.data != EC_MOTION_SENSE_NO_VALUE) {
if (!sensor->drv->set_range)
return EC_RES_INVALID_COMMAND;
if (sensor->drv->set_range(sensor,
in->sensor_range.data,
in->sensor_range.roundup)
!= EC_SUCCESS) {
return EC_RES_INVALID_PARAM;
}
}
if (!sensor->drv->get_range)
return EC_RES_INVALID_COMMAND;
out->sensor_range.ret = sensor->drv->get_range(sensor);
args->response_size = sizeof(out->sensor_range);
break;
case MOTIONSENSE_CMD_SENSOR_OFFSET:
/* Verify sensor number is valid. */
sensor = host_sensor_id_to_real_sensor(
in->sensor_offset.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
/* Set new range if the data arg has a value. */
if (in->sensor_offset.flags & MOTION_SENSE_SET_OFFSET) {
if (!sensor->drv->set_offset)
return EC_RES_INVALID_COMMAND;
ret = sensor->drv->set_offset(sensor,
in->sensor_offset.offset,
in->sensor_offset.temp);
if (ret != EC_SUCCESS)
return ret;
}
if (!sensor->drv->get_offset)
return EC_RES_INVALID_COMMAND;
ret = sensor->drv->get_offset(sensor, out->sensor_offset.offset,
&out->sensor_offset.temp);
if (ret != EC_SUCCESS)
return ret;
args->response_size = sizeof(out->sensor_offset);
break;
case MOTIONSENSE_CMD_SENSOR_SCALE:
/* Verify sensor number is valid. */
sensor = host_sensor_id_to_real_sensor(
in->sensor_scale.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
/* Set new range if the data arg has a value. */
if (in->sensor_scale.flags & MOTION_SENSE_SET_OFFSET) {
if (!sensor->drv->set_scale)
return EC_RES_INVALID_COMMAND;
ret = sensor->drv->set_scale(sensor,
in->sensor_scale.scale,
in->sensor_scale.temp);
if (ret != EC_SUCCESS)
return ret;
}
if (!sensor->drv->get_scale)
return EC_RES_INVALID_COMMAND;
ret = sensor->drv->get_scale(sensor, out->sensor_scale.scale,
&out->sensor_scale.temp);
if (ret != EC_SUCCESS)
return ret;
args->response_size = sizeof(out->sensor_scale);
break;
case MOTIONSENSE_CMD_PERFORM_CALIB:
/* Verify sensor number is valid. */
sensor = host_sensor_id_to_real_sensor(
in->sensor_offset.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
if (!sensor->drv->perform_calib)
return EC_RES_INVALID_COMMAND;
ret = sensor->drv->perform_calib(sensor);
if (ret != EC_SUCCESS)
return ret;
ret = sensor->drv->get_offset(sensor, out->sensor_offset.offset,
&out->sensor_offset.temp);
if (ret != EC_SUCCESS)
return ret;
args->response_size = sizeof(out->sensor_offset);
break;
#ifdef CONFIG_ACCEL_FIFO
case MOTIONSENSE_CMD_FIFO_FLUSH:
sensor = host_sensor_id_to_real_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
atomic_add(&sensor->flush_pending, 1);
task_set_event(TASK_ID_MOTIONSENSE,
TASK_EVENT_MOTION_FLUSH_PENDING, 0);
/* pass-through */
case MOTIONSENSE_CMD_FIFO_INFO:
motion_sense_get_fifo_info(&out->fifo_info);
for (i = 0; i < motion_sensor_count; i++) {
out->fifo_info.lost[i] = motion_sensors[i].lost;
motion_sensors[i].lost = 0;
}
motion_sense_fifo_lost = 0;
args->response_size = sizeof(out->fifo_info) +
sizeof(uint16_t) * motion_sensor_count;
break;
case MOTIONSENSE_CMD_FIFO_READ:
mutex_lock(&g_sensor_mutex);
reported = MIN((args->response_max - sizeof(out->fifo_read)) /
motion_sense_fifo.unit_bytes,
MIN(queue_count(&motion_sense_fifo),
in->fifo_read.max_data_vector));
reported = queue_remove_units(&motion_sense_fifo,
out->fifo_read.data, reported);
mutex_unlock(&g_sensor_mutex);
out->fifo_read.number_data = reported;
args->response_size = sizeof(out->fifo_read) + reported *
motion_sense_fifo.unit_bytes;
break;
case MOTIONSENSE_CMD_FIFO_INT_ENABLE:
switch (in->fifo_int_enable.enable) {
case 0:
case 1:
fifo_int_enabled = in->fifo_int_enable.enable;
/* fallthrough */
case EC_MOTION_SENSE_NO_VALUE:
out->fifo_int_enable.ret = fifo_int_enabled;
args->response_size = sizeof(out->fifo_int_enable);
break;
default:
return EC_RES_INVALID_PARAM;
}
break;
#else
case MOTIONSENSE_CMD_FIFO_INFO:
/* Only support the INFO command, to tell there is no FIFO. */
memset(&out->fifo_info, 0, sizeof(out->fifo_info));
args->response_size = sizeof(out->fifo_info);
break;
#endif
#ifdef CONFIG_GESTURE_HOST_DETECTION
case MOTIONSENSE_CMD_LIST_ACTIVITIES: {
uint32_t enabled, disabled, mask, i;
out->list_activities.enabled = 0;
out->list_activities.disabled = 0;
ret = EC_RES_SUCCESS;
mask = CONFIG_GESTURE_DETECTION_MASK;
while (mask && ret == EC_RES_SUCCESS) {
i = get_next_bit(&mask);
sensor = &motion_sensors[i];
ret = sensor->drv->list_activities(sensor,
&enabled, &disabled);
if (ret == EC_RES_SUCCESS) {
out->list_activities.enabled |= enabled;
out->list_activities.disabled |= disabled;
}
}
if (ret != EC_RES_SUCCESS)
return ret;
args->response_size = sizeof(out->list_activities);
break;
}
case MOTIONSENSE_CMD_SET_ACTIVITY: {
uint32_t enabled, disabled, mask, i;
mask = CONFIG_GESTURE_DETECTION_MASK;
ret = EC_RES_SUCCESS;
while (mask && ret == EC_RES_SUCCESS) {
i = get_next_bit(&mask);
sensor = &motion_sensors[i];
sensor->drv->list_activities(sensor,
&enabled, &disabled);
if ((1 << in->set_activity.activity) &
(enabled | disabled))
ret = sensor->drv->manage_activity(sensor,
in->set_activity.activity,
in->set_activity.enable,
&in->set_activity);
}
if (ret != EC_RES_SUCCESS)
return ret;
args->response_size = 0;
break;
}
#endif /* defined(CONFIG_GESTURE_HOST_DETECTION) */
#ifdef CONFIG_ACCEL_SPOOF_MODE
case MOTIONSENSE_CMD_SPOOF: {
sensor = host_sensor_id_to_real_sensor(in->spoof.sensor_id);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
switch (in->spoof.spoof_enable) {
case MOTIONSENSE_SPOOF_MODE_DISABLE:
/* Disable spoof mode. */
sensor->in_spoof_mode = 0;
break;
case MOTIONSENSE_SPOOF_MODE_CUSTOM:
/*
* Enable spoofing, but use provided component values.
*/
sensor->spoof_xyz[X] = (int)in->spoof.components[X];
sensor->spoof_xyz[Y] = (int)in->spoof.components[Y];
sensor->spoof_xyz[Z] = (int)in->spoof.components[Z];
sensor->in_spoof_mode = 1;
break;
case MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT:
/*
* Enable spoofing, but lock to current sensor
* values. raw_xyz already has the values we want.
*/
sensor->spoof_xyz[X] = sensor->raw_xyz[X];
sensor->spoof_xyz[Y] = sensor->raw_xyz[Y];
sensor->spoof_xyz[Z] = sensor->raw_xyz[Z];
sensor->in_spoof_mode = 1;
break;
case MOTIONSENSE_SPOOF_MODE_QUERY:
/* Querying the spoof status of the sensor. */
out->spoof.ret = sensor->in_spoof_mode;
args->response_size = sizeof(out->spoof);
break;
default:
return EC_RES_INVALID_PARAM;
}
/*
* Only print the status when spoofing is enabled or disabled.
*/
if (in->spoof.spoof_enable != MOTIONSENSE_SPOOF_MODE_QUERY)
print_spoof_mode_status((int)(sensor - motion_sensors));
break;
}
#endif /* defined(CONFIG_ACCEL_SPOOF_MODE) */
default:
/* Call other users of the motion task */
#ifdef CONFIG_LID_ANGLE
if (ret == EC_RES_INVALID_PARAM)
ret = host_cmd_motion_lid(args);
#endif
return ret;
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_MOTION_SENSE_CMD,
host_cmd_motion_sense,
EC_VER_MASK(1) | EC_VER_MASK(2) | EC_VER_MASK(3));
/*****************************************************************************/
/* Console commands */
#ifdef CONFIG_CMD_ACCELS
static int command_accelrange(int argc, char **argv)
{
char *e;
int id, data, round = 1;
struct motion_sensor_t *sensor;
if (argc < 2 || argc > 4)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
if (argc >= 3) {
/* Second argument is data to write. */
data = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
if (argc == 4) {
/* Third argument is rounding flag. */
round = strtoi(argv[3], &e, 0);
if (*e)
return EC_ERROR_PARAM3;
}
/*
* Write new range, if it returns invalid arg, then return
* a parameter error.
*/
if (sensor->drv->set_range(sensor,
data,
round) == EC_ERROR_INVAL)
return EC_ERROR_PARAM2;
} else {
ccprintf("Range for sensor %d: %d\n", id,
sensor->drv->get_range(sensor));
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelrange, command_accelrange,
"id [data [roundup]]",
"Read or write accelerometer range");
static int command_accelresolution(int argc, char **argv)
{
char *e;
int id, data, round = 1;
struct motion_sensor_t *sensor;
if (argc < 2 || argc > 4)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
if (argc >= 3) {
/* Second argument is data to write. */
data = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
if (argc == 4) {
/* Third argument is rounding flag. */
round = strtoi(argv[3], &e, 0);
if (*e)
return EC_ERROR_PARAM3;
}
/*
* Write new resolution, if it returns invalid arg, then
* return a parameter error.
*/
if (sensor->drv->set_resolution &&
sensor->drv->set_resolution(sensor, data, round)
== EC_ERROR_INVAL)
return EC_ERROR_PARAM2;
} else {
ccprintf("Resolution for sensor %d: %d\n", id,
sensor->drv->get_resolution(sensor));
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelres, command_accelresolution,
"id [data [roundup]]",
"Read or write accelerometer resolution");
static int command_accel_data_rate(int argc, char **argv)
{
char *e;
int id, data, round = 1, ret;
struct motion_sensor_t *sensor;
enum sensor_config config_id;
if (argc < 2 || argc > 4)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
if (argc >= 3) {
/* Second argument is data to write. */
data = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
if (argc == 4) {
/* Third argument is rounding flag. */
round = strtoi(argv[3], &e, 0);
if (*e)
return EC_ERROR_PARAM3;
}
/*
* Take ownership of the sensor and
* Write new data rate, if it returns invalid arg, then
* return a parameter error.
*/
config_id = motion_sense_get_ec_config();
sensor->config[SENSOR_CONFIG_AP].odr = 0;
sensor->config[config_id].odr =
data | (round ? ROUND_UP_FLAG : 0);
ret = motion_sense_set_data_rate(sensor);
if (ret)
return EC_ERROR_PARAM2;
/* Sensor might be out of suspend, check the ec_rate */
motion_sense_set_motion_intervals();
} else {
ccprintf("Data rate for sensor %d: %d\n", id,
sensor->drv->get_data_rate(sensor));
ccprintf("EC rate for sensor %d: %d\n", id,
motion_sense_ec_rate(sensor));
ccprintf("Current EC rate: %d\n", motion_interval);
ccprintf("Current Interrupt rate: %d\n", motion_int_interval);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelrate, command_accel_data_rate,
"id [data [roundup]]",
"Read or write accelerometer ODR");
static int command_accel_read_xyz(int argc, char **argv)
{
char *e;
int id, n = 1, ret;
struct motion_sensor_t *sensor;
intv3_t v;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
if (argc >= 3)
n = strtoi(argv[2], &e, 0);
sensor = &motion_sensors[id];
while ((n == -1) || (n-- > 0)) {
ret = sensor->drv->read(sensor, v);
if (ret == 0)
ccprintf("Current data %d: %-5d %-5d %-5d\n",
id, v[X], v[Y], v[Z]);
else
ccprintf("vector not ready\n");
ccprintf("Last calib. data %d: %-5d %-5d %-5d\n",
id, sensor->xyz[X], sensor->xyz[Y], sensor->xyz[Z]);
task_wait_event(motion_min_interval);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelread, command_accel_read_xyz,
"id [n]",
"Read sensor x/y/z");
static int command_accel_init(int argc, char **argv)
{
char *e;
int id, ret;
struct motion_sensor_t *sensor;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
ret = motion_sense_init(sensor);
ccprintf("%s: state %d - %d\n", sensor->name, sensor->state, ret);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelinit, command_accel_init,
"id",
"Init sensor");
#ifdef CONFIG_CMD_ACCEL_INFO
static int command_display_accel_info(int argc, char **argv)
{
char *e;
int val;
if (argc > 3)
return EC_ERROR_PARAM_COUNT;
ccprintf("Motion sensors count = %d\n", motion_sensor_count);
/* First argument is on/off whether to display accel data. */
if (argc > 1) {
if (!parse_bool(argv[1], &val))
return EC_ERROR_PARAM1;
accel_disp = val;
}
/*
* Second arg changes the accel task time interval. Note accel
* sampling interval will be clobbered when chipset suspends or
* resumes.
*/
if (argc > 2) {
val = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
motion_interval = val * MSEC;
task_wake(TASK_ID_MOTIONSENSE);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelinfo, command_display_accel_info,
"on/off [interval]",
"Print motion sensor info, lid angle calculations"
" and set calculation frequency.");
#endif /* CONFIG_CMD_ACCEL_INFO */
#ifdef CONFIG_CMD_ACCEL_FIFO
static int motion_sense_read_fifo(int argc, char **argv)
{
int count, i;
struct ec_response_motion_sensor_data v;
if (argc < 1)
return EC_ERROR_PARAM_COUNT;
/* Limit the amount of data to avoid saturating the UART buffer */
count = MIN(queue_count(&motion_sense_fifo), 16);
for (i = 0; i < count; i++) {
queue_peek_units(&motion_sense_fifo, &v, i, 1);
if (v.flags & (MOTIONSENSE_SENSOR_FLAG_TIMESTAMP |
MOTIONSENSE_SENSOR_FLAG_FLUSH)) {
uint64_t timestamp;
memcpy(×tamp, v.data, sizeof(v.data));
ccprintf("Timestamp: 0x%016lx%s\n", timestamp,
(v.flags & MOTIONSENSE_SENSOR_FLAG_FLUSH ?
" - Flush" : ""));
} else {
ccprintf("%d %d: %-5d %-5d %-5d\n", i, v.sensor_num,
v.data[X], v.data[Y], v.data[Z]);
}
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(fiforead, motion_sense_read_fifo,
"id",
"Read Fifo sensor");
#endif /* defined(CONFIG_CMD_ACCEL_FIFO) */
#endif /* CONFIG_CMD_ACCELS */
#ifdef CONFIG_ACCEL_SPOOF_MODE
static void print_spoof_mode_status(int id)
{
CPRINTS("Sensor %d spoof mode is %s. <%d, %d, %d>", id,
motion_sensors[id].in_spoof_mode ? "enabled" : "disabled",
motion_sensors[id].spoof_xyz[X],
motion_sensors[id].spoof_xyz[Y],
motion_sensors[id].spoof_xyz[Z]);
}
#ifdef CONFIG_CMD_ACCELSPOOF
static int command_accelspoof(int argc, char **argv)
{
char *e;
int id, enable, i;
struct motion_sensor_t *s;
/* There must be at least 1 parameter, the sensor id. */
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (id >= motion_sensor_count || id < 0)
return EC_ERROR_PARAM1;
s = &motion_sensors[id];
/* Print the sensor's current spoof status. */
if (argc == 2)
print_spoof_mode_status(id);
/* Enable/Disable spoof mode. */
if (argc >= 3) {
if (!parse_bool(argv[2], &enable))
return EC_ERROR_PARAM2;
if (enable) {
/*
* If no components are provided, we'll just use the
* current values as the spoofed values. But if the
* components are provided, use the provided ones as the
* spoofed ones.
*/
if (argc == 6) {
for (i = 0; i < 3; i++)
s->spoof_xyz[i] = strtoi(argv[3 + i],
&e, 0);
} else if (argc == 3) {
for (i = X; i <= Z; i++)
s->spoof_xyz[i] = s->raw_xyz[i];
} else {
/* It's either all or nothing. */
return EC_ERROR_PARAM_COUNT;
}
}
s->in_spoof_mode = enable;
print_spoof_mode_status(id);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelspoof, command_accelspoof,
"id [on/off] [X] [Y] [Z]",
"Enable/Disable spoofing of sensor readings.");
#endif /* defined(CONIFG_CMD_ACCELSPOOF) */
#endif /* defined(CONFIG_ACCEL_SPOOF_MODE) */
|