1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
/* Copyright 2020 The ChromiumOS Authors
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "common.h"
#include "console.h"
#include "newton_fit.h"
#include "math.h"
#include "math_util.h"
#include <string.h>
#define CPRINTS(fmt, args...) cprints(CC_MOTION_SENSE, fmt, ##args)
static fp_t distance_squared(fpv3_t a, fpv3_t b)
{
fpv3_t delta;
fpv3_init(delta, a[X] - b[X], a[Y] - b[Y], a[Z] - b[Z]);
return fpv3_dot(delta, delta);
}
static fp_t compute_error(struct newton_fit *fit, fpv3_t center)
{
fp_t error = FLOAT_TO_FP(0.0f);
struct queue_iterator it;
struct newton_fit_orientation *_it;
for (queue_begin(fit->orientations, &it); it.ptr != NULL;
queue_next(fit->orientations, &it)) {
fp_t e;
_it = (struct newton_fit_orientation *)it.ptr;
e = FLOAT_TO_FP(1.0f) -
distance_squared(_it->orientation, center);
error += fp_mul(e, e);
}
return error;
}
static bool is_ready_to_compute(struct newton_fit *fit, bool prune)
{
bool has_min_samples = true;
struct queue_iterator it;
struct newton_fit_orientation *_it;
/* Not full, not ready to compute. */
if (!queue_is_full(fit->orientations))
return false;
/* Inspect all the orientations. */
for (queue_begin(fit->orientations, &it); it.ptr != NULL;
queue_next(fit->orientations, &it)) {
_it = (struct newton_fit_orientation *)it.ptr;
/* If an orientation has too few samples, flag that. */
CPRINTS(" orientation %u/%u", _it->nsamples,
fit->min_orientation_samples);
if (_it->nsamples < fit->min_orientation_samples) {
has_min_samples = false;
break;
}
}
/* If all orientations have the minimum samples, we're done and can
* compute the bias.
*/
if (has_min_samples)
return true;
/* If we got here and prune is true, then we need to remove the oldest
* entry to make room for new orientations.
*/
if (prune)
queue_advance_head(fit->orientations, 1);
return false;
}
void newton_fit_reset(struct newton_fit *fit)
{
queue_init(fit->orientations);
}
bool newton_fit_accumulate(struct newton_fit *fit, fp_t x, fp_t y, fp_t z)
{
struct queue_iterator it;
struct newton_fit_orientation *_it;
fpv3_t v, delta;
fpv3_init(v, x, y, z);
/* Check if we can merge this new data point with an existing
* orientation.
*/
for (queue_begin(fit->orientations, &it); it.ptr != NULL;
queue_next(fit->orientations, &it)) {
_it = (struct newton_fit_orientation *)it.ptr;
fpv3_sub(delta, v, _it->orientation);
/* Skip entries that are too far away. */
if (fpv3_dot(delta, delta) >= fit->nearness_threshold)
continue;
/* Merge new data point with this orientation. */
fpv3_scalar_mul(_it->orientation,
FLOAT_TO_FP(1.0f) - fit->new_pt_weight);
fpv3_scalar_mul(v, fit->new_pt_weight);
fpv3_add(_it->orientation, _it->orientation, v);
if (_it->nsamples < 0xff)
_it->nsamples++;
return is_ready_to_compute(fit, false);
}
/* If queue isn't full. */
if (!queue_is_full(fit->orientations)) {
struct newton_fit_orientation entry;
entry.nsamples = 1;
fpv3_init(entry.orientation, x, y, z);
queue_add_unit(fit->orientations, &entry);
return is_ready_to_compute(fit, false);
}
return is_ready_to_compute(fit, true);
}
void newton_fit_compute(struct newton_fit *fit, fpv3_t bias, fp_t *radius)
{
struct queue_iterator it;
struct newton_fit_orientation *_it;
fpv3_t new_bias, offset, delta;
fp_t error, new_error;
uint32_t iteration = 0;
fp_t inv_orient_count;
if (queue_is_empty(fit->orientations))
return;
inv_orient_count =
fp_div(FLOAT_TO_FP(1.0f), queue_count(fit->orientations));
memcpy(new_bias, bias, sizeof(fpv3_t));
new_error = compute_error(fit, new_bias);
do {
memcpy(bias, new_bias, sizeof(fpv3_t));
error = new_error;
fpv3_zero(offset);
for (queue_begin(fit->orientations, &it); it.ptr != NULL;
queue_next(fit->orientations, &it)) {
fp_t mag;
_it = (struct newton_fit_orientation *)it.ptr;
fpv3_sub(delta, _it->orientation, bias);
mag = fpv3_norm(delta);
fpv3_scalar_mul(delta,
fp_div(mag - FLOAT_TO_FP(1.0f), mag));
fpv3_add(offset, offset, delta);
}
fpv3_scalar_mul(offset, inv_orient_count);
fpv3_add(new_bias, bias, offset);
new_error = compute_error(fit, new_bias);
if (new_error > error)
memcpy(new_bias, bias, sizeof(fpv3_t));
++iteration;
} while (iteration < fit->max_iterations && new_error < error &&
new_error > fit->error_threshold);
memcpy(bias, new_bias, sizeof(fpv3_t));
if (radius) {
*radius = FLOAT_TO_FP(0.0f);
for (queue_begin(fit->orientations, &it); it.ptr != NULL;
queue_next(fit->orientations, &it)) {
_it = (struct newton_fit_orientation *)it.ptr;
fpv3_sub(delta, _it->orientation, bias);
*radius += fpv3_norm(delta);
}
*radius *= inv_orient_count;
}
}
|