1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "charge_manager.h"
#include "console.h"
#include "hooks.h"
#include "host_command.h"
#include "task.h"
#include "timer.h"
#include "usb_pd.h"
#include "util.h"
/* Event log FIFO */
#define UNIT_SIZE sizeof(struct ec_response_pd_log)
#define LOG_SIZE (CONFIG_USB_PD_LOG_SIZE/UNIT_SIZE)
static struct ec_response_pd_log __bss_slow log_events[LOG_SIZE];
BUILD_ASSERT(POWER_OF_TWO(LOG_SIZE));
/*
* The FIFO pointers are defined as following :
* "log_head" is the next available event to dequeue.
* "log_tail" is marking the end of the FIFO content (after last committed event)
* "log_tail_next" is the next available spot to enqueue events.
* The pointers are not wrapped until they are used, so we don't need an extra
* entry to disambiguate between full and empty FIFO.
*
* For concurrency, several tasks might try to enqueue events in parallel with
* pd_log_event(). Only one task is dequeuing events (host commands or VDM).
* When the FIFO is full, pd_log_event() will discard the oldest events,
* so "log_head" is incremented/decremented in a critical section since it is
* accessed from both pd_log_event() and pd_log_dequeue().
* log_tail_next is also protected as several writers can race to add an event
* to the queue.
* When a writer is done adding its event, it is updating log_tail,
* so the event can be consumed by pd_log_dequeue().
*/
static size_t log_head;
static size_t log_tail;
static size_t log_tail_next;
/* Size of one FIFO entry */
#define ENTRY_SIZE(payload_sz) (1+DIV_ROUND_UP((payload_sz), UNIT_SIZE))
static void log_add_event(uint8_t type, uint8_t size_port, uint16_t data,
void *payload, uint32_t timestamp)
{
struct ec_response_pd_log *r;
size_t payload_size = PD_LOG_SIZE(size_port);
size_t total_size = ENTRY_SIZE(payload_size);
size_t current_tail, first;
/* --- critical section : reserve queue space --- */
interrupt_disable();
current_tail = log_tail_next;
log_tail_next = current_tail + total_size;
interrupt_enable();
/* --- end of critical section --- */
/* Out of space : discard the oldest entry */
while ((LOG_SIZE - (current_tail - log_head)) < total_size) {
struct ec_response_pd_log *oldest;
/* --- critical section : atomically free-up space --- */
interrupt_disable();
oldest = log_events + (log_head & (LOG_SIZE - 1));
log_head += ENTRY_SIZE(PD_LOG_SIZE(oldest->size_port));
interrupt_enable();
/* --- end of critical section --- */
}
r = log_events + (current_tail & (LOG_SIZE - 1));
r->timestamp = timestamp;
r->type = type;
r->size_port = size_port;
r->data = data;
/* copy the payload into the FIFO */
first = MIN(total_size - 1, (LOG_SIZE -
(current_tail & (LOG_SIZE - 1))) - 1);
if (first)
memcpy(r->payload, payload, first * UNIT_SIZE);
if (first < total_size - 1)
memcpy(log_events, ((uint8_t *)payload) + first * UNIT_SIZE,
(total_size - first) * UNIT_SIZE);
/* mark the entry available in the queue if nobody is behind us */
if (current_tail == log_tail)
log_tail = log_tail_next;
}
void pd_log_event(uint8_t type, uint8_t size_port,
uint16_t data, void *payload)
{
uint32_t timestamp = get_time().val >> PD_LOG_TIMESTAMP_SHIFT;
log_add_event(type, size_port, data, payload, timestamp);
}
static int pd_log_dequeue(struct ec_response_pd_log *r)
{
uint32_t now = get_time().val >> PD_LOG_TIMESTAMP_SHIFT;
unsigned total_size, first;
struct ec_response_pd_log *entry;
size_t current_head;
retry:
current_head = log_head;
/* The log FIFO is empty */
if (log_tail == current_head) {
memset(r, 0, UNIT_SIZE);
r->type = PD_EVENT_NO_ENTRY;
return UNIT_SIZE;
}
entry = log_events + (current_head & (LOG_SIZE - 1));
total_size = ENTRY_SIZE(PD_LOG_SIZE(entry->size_port));
first = MIN(total_size, LOG_SIZE - (current_head & (LOG_SIZE - 1)));
memcpy(r, entry, first * UNIT_SIZE);
if (first < total_size)
memcpy(r + first, log_events, (total_size-first) * UNIT_SIZE);
/* --- critical section : remove the entry from the queue --- */
interrupt_disable();
if (log_head != current_head) { /* our entry was thrown away */
interrupt_enable();
goto retry;
}
log_head += total_size;
interrupt_enable();
/* --- end of critical section --- */
/* fixup the timestamp : number of milliseconds in the past */
r->timestamp = now - r->timestamp;
return total_size * UNIT_SIZE;
}
#ifdef HAS_TASK_HOSTCMD
/* number of accessory entries we have queued since last check */
static volatile int incoming_logs;
void pd_log_recv_vdm(int port, int cnt, uint32_t *payload)
{
struct ec_response_pd_log *r = (void *)&payload[1];
/* update port number from MCU point of view */
size_t size = PD_LOG_SIZE(r->size_port);
uint8_t size_port = PD_LOG_PORT_SIZE(port, size);
uint32_t timestamp;
if ((cnt < 2 + DIV_ROUND_UP(size, sizeof(uint32_t))) ||
!(payload[0] & VDO_SRC_RESPONDER))
/* Not a proper log entry, bail out */
return;
if (r->type != PD_EVENT_NO_ENTRY) {
timestamp = (get_time().val >> PD_LOG_TIMESTAMP_SHIFT)
- r->timestamp;
log_add_event(r->type, size_port, r->data, r->payload,
timestamp);
/* record that we have enqueued new content */
incoming_logs++;
}
}
/* we are a PD MCU/EC, send back the events to the host */
static int hc_pd_get_log_entry(struct host_cmd_handler_args *args)
{
struct ec_response_pd_log *r = args->response;
dequeue_retry:
args->response_size = pd_log_dequeue(r);
/* if the MCU log no longer has entries, try connected accessories */
if (r->type == PD_EVENT_NO_ENTRY) {
int i, res;
incoming_logs = 0;
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; ++i) {
/* only accessories who knows Google logging format */
if (pd_get_identity_vid(i) != USB_VID_GOOGLE)
continue;
res = pd_fetch_acc_log_entry(i);
if (res == EC_RES_BUSY) /* host should retry */
return EC_RES_BUSY;
}
/* we have received new entries from an accessory */
if (incoming_logs)
goto dequeue_retry;
/* else the current entry is already "PD_EVENT_NO_ENTRY" */
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_PD_GET_LOG_ENTRY,
hc_pd_get_log_entry,
EC_VER_MASK(0));
static int hc_pd_write_log_entry(struct host_cmd_handler_args *args)
{
const struct ec_params_pd_write_log_entry *p = args->params;
uint8_t type = p->type;
uint8_t port = p->port;
if (type < PD_EVENT_MCU_BASE || type >= PD_EVENT_ACC_BASE)
return EC_RES_INVALID_PARAM;
if (port > 0 && port >= CONFIG_USB_PD_PORT_COUNT)
return EC_RES_INVALID_PARAM;
switch (type) {
/* Charge event: Log data for all ports */
case PD_EVENT_MCU_CHARGE:
charge_manager_save_log(port);
break;
/* Other events: no extra data, just log event type + port */
case PD_EVENT_MCU_CONNECT:
case PD_EVENT_MCU_BOARD_CUSTOM:
default:
pd_log_event(type, PD_LOG_PORT_SIZE(port, 0), 0, NULL);
break;
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_PD_WRITE_LOG_ENTRY,
hc_pd_write_log_entry,
EC_VER_MASK(0));
#else /* !HAS_TASK_HOSTCMD */
/* we are a PD accessory, send back the events as a VDM (VDO_CMD_GET_LOG) */
int pd_vdm_get_log_entry(uint32_t *payload)
{
struct ec_response_pd_log *r = (void *)&payload[1];
int byte_size;
byte_size = pd_log_dequeue(r);
return 1 + DIV_ROUND_UP(byte_size, sizeof(uint32_t));
}
#endif /* !HAS_TASK_HOSTCMD */
|