1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* Implementation of RSA signature verification which uses a pre-processed key
* for computation.
*/
#include "rsa.h"
#include "sha256.h"
#include "util.h"
/**
* a[] -= mod
*/
static void sub_mod(const struct rsa_public_key *key, uint32_t *a)
{
int64_t A = 0;
uint32_t i;
for (i = 0; i < RSANUMWORDS; ++i) {
A += (uint64_t)a[i] - key->n[i];
a[i] = (uint32_t)A;
A >>= 32;
}
}
/**
* Return a[] >= mod
*/
static int ge_mod(const struct rsa_public_key *key, const uint32_t *a)
{
uint32_t i;
for (i = RSANUMWORDS; i;) {
--i;
if (a[i] < key->n[i])
return 0;
if (a[i] > key->n[i])
return 1;
}
return 1; /* equal */
}
/**
* Montgomery c[] += a * b[] / R % mod
*/
static void mont_mul_add(const struct rsa_public_key *key,
uint32_t *c,
const uint32_t a,
const uint32_t *b)
{
uint64_t A = (uint64_t)a * b[0] + c[0];
uint32_t d0 = (uint32_t)A * key->n0inv;
uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
uint32_t i;
for (i = 1; i < RSANUMWORDS; ++i) {
A = (A >> 32) + (uint64_t)a * b[i] + c[i];
B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
c[i - 1] = (uint32_t)B;
}
A = (A >> 32) + (B >> 32);
c[i - 1] = (uint32_t)A;
if (A >> 32)
sub_mod(key, c);
}
/**
* Montgomery c[] = a[] * b[] / R % mod
*/
static void mont_mul(const struct rsa_public_key *key,
uint32_t *c,
const uint32_t *a,
const uint32_t *b)
{
uint32_t i;
for (i = 0; i < RSANUMWORDS; ++i)
c[i] = 0;
for (i = 0; i < RSANUMWORDS; ++i)
mont_mul_add(key, c, a[i], b);
}
/**
* In-place public exponentiation.
*
* @param key Key to use in signing
* @param inout Input and output big-endian byte array
* @param workbuf32 Work buffer; caller must verify this is
* 3 x RSANUMWORDS elements long.
*/
static void mod_pow_F4(const struct rsa_public_key *key, uint8_t *inout,
uint32_t *workbuf32)
{
uint32_t *a = workbuf32;
uint32_t *a_r = a + RSANUMWORDS;
uint32_t *aa_r = a_r + RSANUMWORDS;
uint32_t *aaa = aa_r; /* Re-use location. */
int i;
/* Convert from big endian byte array to little endian word array. */
for (i = 0; i < RSANUMWORDS; ++i) {
uint32_t tmp =
(inout[((RSANUMWORDS - 1 - i) * 4) + 0] << 24) |
(inout[((RSANUMWORDS - 1 - i) * 4) + 1] << 16) |
(inout[((RSANUMWORDS - 1 - i) * 4) + 2] << 8) |
(inout[((RSANUMWORDS - 1 - i) * 4) + 3] << 0);
a[i] = tmp;
}
mont_mul(key, a_r, a, key->rr); /* a_r = a * RR / R mod M */
for (i = 0; i < 16; i += 2) {
mont_mul(key, aa_r, a_r, a_r); /* aa_r = a_r * a_r / R mod M */
mont_mul(key, a_r, aa_r, aa_r);/* a_r = aa_r * aa_r / R mod M */
}
mont_mul(key, aaa, a_r, a); /* aaa = a_r * a / R mod M */
/* Make sure aaa < mod; aaa is at most 1x mod too large. */
if (ge_mod(key, aaa))
sub_mod(key, aaa);
/* Convert to bigendian byte array */
for (i = RSANUMWORDS - 1; i >= 0; --i) {
uint32_t tmp = aaa[i];
*inout++ = (uint8_t)(tmp >> 24);
*inout++ = (uint8_t)(tmp >> 16);
*inout++ = (uint8_t)(tmp >> 8);
*inout++ = (uint8_t)(tmp >> 0);
}
}
/*
* PKCS#1 padding (from the RSA PKCS#1 v2.1 standard)
*
* The DER-encoded padding is defined as follows :
* 0x00 || 0x01 || PS || 0x00 || T
*
* T: DER Encoded DigestInfo value which depends on the hash function used,
* for SHA-256:
* (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 || H.
*
* Length(T) = 51 octets for SHA-256
*
* PS: octet string consisting of {Length(RSA Key) - Length(T) - 3} 0xFF
*/
static const uint8_t sha256_tail[] = {
0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
0x05, 0x00, 0x04, 0x20
};
#define PKCS_PAD_SIZE (RSANUMBYTES - SHA256_DIGEST_SIZE)
/**
* Check PKCS#1 padding bytes
*
* @param sig Signature to verify
* @return 0 if the padding is correct.
*/
static int check_padding(const uint8_t *sig)
{
uint8_t *ptr = (uint8_t *)sig;
int result = 0;
int i;
/* First 2 bytes are always 0x00 0x01 */
result |= *ptr++ ^ 0x00;
result |= *ptr++ ^ 0x01;
/* Then 0xff bytes until the tail */
for (i = 0; i < PKCS_PAD_SIZE - sizeof(sha256_tail) - 2; i++)
result |= *ptr++ ^ 0xff;
/* Check the tail. */
result |= memcmp(ptr, sha256_tail, sizeof(sha256_tail));
return !!result;
}
/*
* Verify a SHA256WithRSA PKCS#1 v1.5 signature against an expected
* SHA256 hash.
*
* @param key RSA public key
* @param signature RSA signature
* @param sha SHA-256 digest of the content to verify
* @param workbuf32 Work buffer; caller must verify this is
* 3 x RSANUMWORDS elements long.
* @return 0 on failure, 1 on success.
*/
int rsa_verify(const struct rsa_public_key *key, const uint8_t *signature,
const uint8_t *sha, uint32_t *workbuf32)
{
uint8_t buf[RSANUMBYTES];
/* Copy input to local workspace. */
memcpy(buf, signature, RSANUMBYTES);
mod_pow_F4(key, buf, workbuf32); /* In-place exponentiation. */
/* Check the PKCS#1 padding */
if (check_padding(buf) != 0)
return 0;
/* Check the digest. */
if (memcmp(buf + PKCS_PAD_SIZE, sha, SHA256_DIGEST_SIZE) != 0)
return 0;
return 1; /* All checked out OK. */
}
|