1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
/* Copyright 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* NEW thermal engine module for Chrome EC. This is a completely different
* implementation from the original version that shipped on Link.
*/
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "fan.h"
#include "hooks.h"
#include "host_command.h"
#include "temp_sensor.h"
#include "thermal.h"
#include "throttle_ap.h"
#include "timer.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_THERMAL, outstr)
#define CPRINTS(format, args...) cprints(CC_THERMAL, format, ## args)
/*****************************************************************************/
/* EC-specific thermal controls */
test_mockable_static void smi_sensor_failure_warning(void)
{
CPRINTS("can't read any temp sensors!");
host_set_single_event(EC_HOST_EVENT_THERMAL);
}
int thermal_fan_percent(int low, int high, int cur)
{
if (cur < low)
return 0;
if (cur > high)
return 100;
return 100 * (cur - low) / (high - low);
}
/* The logic below is hard-coded for only three thresholds: WARN, HIGH, HALT.
* This is just a sanity check to be sure we catch any changes in thermal.h
*/
BUILD_ASSERT(EC_TEMP_THRESH_COUNT == 3);
/* Keep track of which thresholds have triggered */
static cond_t cond_hot[EC_TEMP_THRESH_COUNT];
static void thermal_control(void)
{
int i, j, t, rv, f;
int count_over[EC_TEMP_THRESH_COUNT];
int count_under[EC_TEMP_THRESH_COUNT];
int num_valid_limits[EC_TEMP_THRESH_COUNT];
int num_sensors_read;
int fmax;
int temp_fan_configured;
#ifdef CONFIG_CUSTOM_FAN_CONTROL
int temp[TEMP_SENSOR_COUNT];
#endif
/* Get ready to count things */
memset(count_over, 0, sizeof(count_over));
memset(count_under, 0, sizeof(count_under));
memset(num_valid_limits, 0, sizeof(num_valid_limits));
num_sensors_read = 0;
fmax = 0;
temp_fan_configured = 0;
/* go through all the sensors */
for (i = 0; i < TEMP_SENSOR_COUNT; ++i) {
/* read one */
rv = temp_sensor_read(i, &t);
#ifdef CONFIG_CUSTOM_FAN_CONTROL
/* Store all sensors value */
temp[i] = K_TO_C(t);
#endif
if (rv != EC_SUCCESS)
continue;
else
num_sensors_read++;
/* check all the limits */
for (j = 0; j < EC_TEMP_THRESH_COUNT; j++) {
int limit = thermal_params[i].temp_host[j];
int release = thermal_params[i].temp_host_release[j];
if (limit) {
num_valid_limits[j]++;
if (t > limit) {
count_over[j]++;
} else if (release) {
if (t < release)
count_under[j]++;
} else if (t < limit) {
count_under[j]++;
}
}
}
/* figure out the max fan needed, too */
if (thermal_params[i].temp_fan_off &&
thermal_params[i].temp_fan_max) {
f = thermal_fan_percent(thermal_params[i].temp_fan_off,
thermal_params[i].temp_fan_max,
t);
if (f > fmax)
fmax = f;
temp_fan_configured = 1;
}
}
if (!num_sensors_read) {
/*
* Trigger a SMI event if we can't read any sensors.
*
* In theory we could do something more elaborate like forcing
* the system to shut down if no sensors are available after
* several retries. This is a very unlikely scenario -
* particularly on LM4-based boards, since the LM4 has its own
* internal temp sensor. It's most likely to occur during
* bringup of a new board, where we haven't debugged the I2C
* bus to the sensors; forcing a shutdown in that case would
* merely hamper board bringup.
*
* If in G3, then there is no need trigger an SMI event since
* the AP is off and this can be an expected state if
* temperature sensors are powered by a power rail that's only
* on if the AP is out of G3. Note this could be 'ANY_OFF' as
* well, but that causes the thermal unit test to fail.
*/
if (!chipset_in_state(CHIPSET_STATE_HARD_OFF))
smi_sensor_failure_warning();
return;
}
/* See what the aggregated limits are. Any temp over the limit
* means it's hot, but all temps have to be under the limit to
* be cool again.
*/
for (j = 0; j < EC_TEMP_THRESH_COUNT; j++) {
if (count_over[j])
cond_set_true(&cond_hot[j]);
else if (count_under[j] == num_valid_limits[j])
cond_set_false(&cond_hot[j]);
}
/* What do we do about it? (note hard-coded logic). */
if (cond_went_true(&cond_hot[EC_TEMP_THRESH_HALT])) {
CPRINTS("thermal SHUTDOWN");
chipset_force_shutdown(CHIPSET_SHUTDOWN_THERMAL);
} else if (cond_went_false(&cond_hot[EC_TEMP_THRESH_HALT])) {
/* We don't reboot automatically - the user has to push
* the power button. It's likely that we can't even
* detect this sensor transition until then, but we
* do have to check in order to clear the cond_t.
*/
CPRINTS("thermal no longer shutdown");
}
if (cond_went_true(&cond_hot[EC_TEMP_THRESH_HIGH])) {
CPRINTS("thermal HIGH");
throttle_ap(THROTTLE_ON, THROTTLE_HARD, THROTTLE_SRC_THERMAL);
} else if (cond_went_false(&cond_hot[EC_TEMP_THRESH_HIGH])) {
CPRINTS("thermal no longer high");
throttle_ap(THROTTLE_OFF, THROTTLE_HARD, THROTTLE_SRC_THERMAL);
}
if (cond_went_true(&cond_hot[EC_TEMP_THRESH_WARN])) {
CPRINTS("thermal WARN");
throttle_ap(THROTTLE_ON, THROTTLE_SOFT, THROTTLE_SRC_THERMAL);
} else if (cond_went_false(&cond_hot[EC_TEMP_THRESH_WARN])) {
CPRINTS("thermal no longer warn");
throttle_ap(THROTTLE_OFF, THROTTLE_SOFT, THROTTLE_SRC_THERMAL);
}
if (temp_fan_configured) {
#ifdef CONFIG_FANS
#ifdef CONFIG_CUSTOM_FAN_CONTROL
for (i = 0; i < fan_get_count(); i++) {
if (!is_thermal_control_enabled(i))
continue;
board_override_fan_control(i, temp);
}
#else
/* TODO(crosbug.com/p/23797): For now, we just treat all
* fans the same. It would be better if we could assign
* different thermal profiles to each fan - in case one
* fan cools the CPU while another cools the radios or
* battery.
*/
for (i = 0; i < fan_get_count(); i++)
fan_set_percent_needed(i, fmax);
#endif
#endif
}
}
/* Wait until after the sensors have been read */
DECLARE_HOOK(HOOK_SECOND, thermal_control, HOOK_PRIO_TEMP_SENSOR_DONE);
/*****************************************************************************/
/* Console commands */
static int command_thermalget(int argc, char **argv)
{
int i;
ccprintf("sensor warn high halt fan_off fan_max name\n");
for (i = 0; i < TEMP_SENSOR_COUNT; i++) {
ccprintf(" %2d %3d %3d %3d %3d %3d %s\n",
i,
thermal_params[i].temp_host[EC_TEMP_THRESH_WARN],
thermal_params[i].temp_host[EC_TEMP_THRESH_HIGH],
thermal_params[i].temp_host[EC_TEMP_THRESH_HALT],
thermal_params[i].temp_fan_off,
thermal_params[i].temp_fan_max,
temp_sensors[i].name);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(thermalget, command_thermalget,
NULL,
"Print thermal parameters (degrees Kelvin)");
static int command_thermalset(int argc, char **argv)
{
unsigned int n;
int i, val;
char *e;
if (argc < 3 || argc > 7)
return EC_ERROR_PARAM_COUNT;
n = (unsigned int)strtoi(argv[1], &e, 0);
if (*e)
return EC_ERROR_PARAM1;
for (i = 2; i < argc; i++) {
val = strtoi(argv[i], &e, 0);
if (*e)
return EC_ERROR_PARAM1 + i - 1;
if (val < 0)
continue;
switch (i) {
case 2:
thermal_params[n].temp_host[EC_TEMP_THRESH_WARN] = val;
break;
case 3:
thermal_params[n].temp_host[EC_TEMP_THRESH_HIGH] = val;
break;
case 4:
thermal_params[n].temp_host[EC_TEMP_THRESH_HALT] = val;
break;
case 5:
thermal_params[n].temp_fan_off = val;
break;
case 6:
thermal_params[n].temp_fan_max = val;
break;
}
}
command_thermalget(0, 0);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(thermalset, command_thermalset,
"sensor warn [high [shutdown [fan_off [fan_max]]]]",
"Set thermal parameters (degrees Kelvin)."
" Use -1 to skip.");
/*****************************************************************************/
/* Host commands. We'll reuse the host command number, but this is version 1,
* not version 0. Different structs, different meanings.
*/
static enum ec_status
thermal_command_set_threshold(struct host_cmd_handler_args *args)
{
const struct ec_params_thermal_set_threshold_v1 *p = args->params;
if (p->sensor_num >= TEMP_SENSOR_COUNT)
return EC_RES_INVALID_PARAM;
thermal_params[p->sensor_num] = p->cfg;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_THERMAL_SET_THRESHOLD,
thermal_command_set_threshold,
EC_VER_MASK(1));
static enum ec_status
thermal_command_get_threshold(struct host_cmd_handler_args *args)
{
const struct ec_params_thermal_get_threshold_v1 *p = args->params;
struct ec_thermal_config *r = args->response;
if (p->sensor_num >= TEMP_SENSOR_COUNT)
return EC_RES_INVALID_PARAM;
*r = thermal_params[p->sensor_num];
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_THERMAL_GET_THRESHOLD,
thermal_command_get_threshold,
EC_VER_MASK(1));
|