1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
/* Copyright 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Timer module for Chrome EC operating system */
#include "atomic.h"
#include "builtin/assert.h"
#include "common.h"
#include "console.h"
#include "hooks.h"
#include "hwtimer.h"
#include "system.h"
#include "util.h"
#include "task.h"
#include "timer.h"
#include "watchdog.h"
#ifdef CONFIG_ZEPHYR
#include <zephyr/kernel.h> /* For k_usleep() */
#else
extern __error("k_usleep() should only be called from Zephyr code") int32_t
k_usleep(int32_t);
#endif /* CONFIG_ZEPHYR */
#ifdef CONFIG_COMMON_RUNTIME
#define CPRINTS(format, args...) cprints(CC_SYSTEM, format, ##args)
#define CPRINTF(format, args...) cprintf(CC_SYSTEM, format, ##args)
#else
#define CPRINTS(format, args...)
#define CPRINTF(format, args...)
#endif
#define TIMER_SYSJUMP_TAG 0x4d54 /* "TM" */
/* High 32-bits of the 64-bit timestamp counter. */
STATIC_IF_NOT(CONFIG_HWTIMER_64BIT) volatile uint32_t clksrc_high;
/* Bitmap of currently running timers */
static uint32_t timer_running;
/* Deadlines of all timers */
static timestamp_t timer_deadline[TASK_ID_COUNT];
static uint32_t next_deadline = 0xffffffff;
/* Hardware timer routine IRQ number */
static int timer_irq;
static void expire_timer(task_id_t tskid)
{
/* we are done with this timer */
atomic_clear_bits((atomic_t *)&timer_running, 1 << tskid);
/* wake up the taks waiting for this timer */
task_set_event(tskid, TASK_EVENT_TIMER);
}
int timestamp_expired(timestamp_t deadline, const timestamp_t *now)
{
timestamp_t now_val;
if (!now) {
now_val = get_time();
now = &now_val;
}
return ((int64_t)(now->val - deadline.val) >= 0);
}
void process_timers(int overflow)
{
uint32_t check_timer, running_t0;
timestamp_t next;
timestamp_t now;
if (!IS_ENABLED(CONFIG_HWTIMER_64BIT) && overflow)
clksrc_high++;
do {
next.val = -1ull;
now = get_time();
do {
/* read atomically the current state of timer running */
check_timer = running_t0 = timer_running;
while (check_timer) {
int tskid = __fls(check_timer);
/* timer has expired ? */
if (timer_deadline[tskid].val <= now.val)
expire_timer(tskid);
else if ((timer_deadline[tskid].le.hi ==
now.le.hi) &&
(timer_deadline[tskid].le.lo <
next.le.lo))
next.val = timer_deadline[tskid].val;
check_timer &= ~BIT(tskid);
}
/* if there is a new timer, let's retry */
} while (timer_running & ~running_t0);
if (next.le.hi == 0xffffffff) {
/* no deadline to set */
__hw_clock_event_clear();
next_deadline = 0xffffffff;
return;
}
__hw_clock_event_set(next.le.lo);
next_deadline = next.le.lo;
} while (next.val <= get_time().val);
}
#ifndef CONFIG_HW_SPECIFIC_UDELAY
void udelay(unsigned us)
{
unsigned t0 = __hw_clock_source_read();
/*
* udelay() may be called with interrupts disabled, so we can't rely on
* process_timers() updating the top 32 bits. So handle wraparound
* ourselves rather than calling get_time() and comparing with a
* deadline.
*
* This may fail for delays close to 2^32 us (~4000 sec), because the
* subtraction below can overflow. That's acceptable, because the
* watchdog timer would have tripped long before that anyway.
*/
while (__hw_clock_source_read() - t0 <= us)
;
}
#endif
/* Zephyr provides its own implementation in task shim */
#ifndef CONFIG_ZEPHYR
int timer_arm(timestamp_t event, task_id_t tskid)
{
timestamp_t now = get_time();
ASSERT(tskid < TASK_ID_COUNT);
if (timer_running & BIT(tskid))
return EC_ERROR_BUSY;
timer_deadline[tskid] = event;
atomic_or((atomic_t *)&timer_running, BIT(tskid));
/* Modify the next event if needed */
if ((event.le.hi < now.le.hi) ||
((event.le.hi == now.le.hi) && (event.le.lo <= next_deadline)))
task_trigger_irq(timer_irq);
return EC_SUCCESS;
}
void timer_cancel(task_id_t tskid)
{
ASSERT(tskid < TASK_ID_COUNT);
atomic_clear_bits((atomic_t *)&timer_running, BIT(tskid));
/*
* Don't need to cancel the hardware timer interrupt, instead do
* timer-related housekeeping when the next timer interrupt fires.
*/
}
#endif
/*
* For us < (2^31 - task scheduling latency)(~ 2147 sec), this function will
* sleep for at least us, and no more than 2*us. As us approaches 2^32-1, the
* probability of delay longer than 2*us (and possibly infinite delay)
* increases.
*/
void usleep(unsigned us)
{
uint32_t evt = 0;
uint32_t t0;
/* If a wait is 0, return immediately. */
if (!us)
return;
if (IS_ENABLED(CONFIG_ZEPHYR)) {
while (us)
us = k_usleep(us);
return;
}
t0 = __hw_clock_source_read();
/* If task scheduling has not started, just delay */
if (!task_start_called()) {
udelay(us);
return;
}
/* If in interrupt context or interrupts are disabled, use udelay() */
if (!is_interrupt_enabled() || in_interrupt_context()) {
CPRINTS("Sleeping not allowed");
udelay(us);
return;
}
do {
evt |= task_wait_event(us);
} while (!(evt & TASK_EVENT_TIMER) &&
((__hw_clock_source_read() - t0) < us));
/* Re-queue other events which happened in the meanwhile */
if (evt)
atomic_or(task_get_event_bitmap(task_get_current()),
evt & ~TASK_EVENT_TIMER);
}
#ifdef CONFIG_ZTEST
timestamp_t *get_time_mock;
#endif /* CONFIG_ZTEST */
timestamp_t get_time(void)
{
timestamp_t ts;
#ifdef CONFIG_ZTEST
if (get_time_mock != NULL)
return *get_time_mock;
#endif /* CONFIG_ZTEST */
if (IS_ENABLED(CONFIG_HWTIMER_64BIT)) {
ts.val = __hw_clock_source_read64();
} else {
ts.le.hi = clksrc_high;
ts.le.lo = __hw_clock_source_read();
/*
* TODO(b/213342294) If statement below doesn't catch overflows
* when interrupts are disabled or currently processed interrupt
* has higher priority.
*/
if (ts.le.hi != clksrc_high) {
ts.le.hi = clksrc_high;
ts.le.lo = __hw_clock_source_read();
}
}
return ts;
}
clock_t clock(void)
{
/* __hw_clock_source_read() returns a microsecond resolution timer.*/
return (clock_t)__hw_clock_source_read() / 1000;
}
void force_time(timestamp_t ts)
{
if (IS_ENABLED(CONFIG_HWTIMER_64BIT)) {
__hw_clock_source_set64(ts.val);
} else {
/* Save current interrupt state */
bool interrupt_enabled = is_interrupt_enabled();
/*
* Updating timer shouldn't be interrupted (eg. when counter
* overflows) because it could lead to some unintended
* consequences. Please note that this function can be called
* with disabled or enabled interrupts so we need to restore
* the original state later.
*/
interrupt_disable();
clksrc_high = ts.le.hi;
__hw_clock_source_set(ts.le.lo);
/* Restore original interrupt state */
if (interrupt_enabled)
interrupt_enable();
}
/* some timers might be already expired : process them */
task_trigger_irq(timer_irq);
}
/*
* Define versions of __hw_clock_source_read and __hw_clock_source_set
* that wrap the 64-bit versions for chips with CONFIG_HWTIMER_64BIT.
*/
#ifdef CONFIG_HWTIMER_64BIT
__overridable uint32_t __hw_clock_source_read(void)
{
return (uint32_t)__hw_clock_source_read64();
}
void __hw_clock_source_set(uint32_t ts)
{
uint64_t current = __hw_clock_source_read64();
__hw_clock_source_set64(((current >> 32) << 32) | ts);
}
#endif /* CONFIG_HWTIMER_64BIT */
void timer_print_info(void)
{
timestamp_t t = get_time();
uint64_t deadline = (uint64_t)t.le.hi << 32 | __hw_clock_event_get();
int tskid;
ccprintf("Time: 0x%016llx us, %11.6lld s\n"
"Deadline: 0x%016llx -> %11.6lld s from now\n"
"Active timers:\n",
t.val, t.val, deadline, deadline - t.val);
cflush();
for (tskid = 0; tskid < TASK_ID_COUNT; tskid++) {
if (timer_running & BIT(tskid)) {
ccprintf(" Tsk %2d 0x%016llx -> %11.6lld\n", tskid,
timer_deadline[tskid].val,
timer_deadline[tskid].val - t.val);
cflush();
}
}
}
void timer_init(void)
{
const timestamp_t *ts;
int size, version;
BUILD_ASSERT(TASK_ID_COUNT < sizeof(timer_running) * 8);
/* Restore time from before sysjump */
ts = (const timestamp_t *)system_get_jump_tag(TIMER_SYSJUMP_TAG,
&version, &size);
if (ts && version == 1 && size == sizeof(timestamp_t)) {
if (IS_ENABLED(CONFIG_HWTIMER_64BIT)) {
timer_irq = __hw_clock_source_init64(ts->val);
} else {
clksrc_high = ts->le.hi;
timer_irq = __hw_clock_source_init(ts->le.lo);
}
} else {
if (IS_ENABLED(CONFIG_HWTIMER_64BIT))
timer_irq = __hw_clock_source_init64(0);
else
timer_irq = __hw_clock_source_init(0);
}
}
/* Preserve time across a sysjump */
static void timer_sysjump(void)
{
timestamp_t ts = get_time();
system_add_jump_tag(TIMER_SYSJUMP_TAG, 1, sizeof(ts), &ts);
}
DECLARE_HOOK(HOOK_SYSJUMP, timer_sysjump, HOOK_PRIO_DEFAULT);
#ifdef CONFIG_CMD_WAITMS
static int command_wait(int argc, const char **argv)
{
char *e;
int i;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
i = strtoi(argv[1], &e, 0);
if (*e)
return EC_ERROR_PARAM1;
if (i < 0)
return EC_ERROR_PARAM1;
/*
* Reload the watchdog so that issuing multiple small waitms commands
* quickly one after the other will not cause a reset.
*
* Reloading before waiting also allows for testing watchdog.
*/
watchdog_reload();
/*
* Waiting for too long (e.g. 3s) will cause the EC to reset due to a
* watchdog timeout. This is intended behaviour and is in fact used by
* a FAFT test to check that the watchdog timer is working.
*/
udelay(i * 1000);
return EC_SUCCESS;
}
/* Typically a large delay (e.g. 3s) will cause a reset */
DECLARE_CONSOLE_COMMAND(waitms, command_wait, "msec",
"Busy-wait for msec (large delays will reset)");
#endif
#ifdef CONFIG_CMD_FORCETIME
/*
* Force the hwtimer to a given time. This may have undesired consequences,
* especially when going "backward" in time, because task deadlines are
* left un-adjusted.
*/
static int command_force_time(int argc, const char **argv)
{
char *e;
timestamp_t new;
if (argc < 3)
return EC_ERROR_PARAM_COUNT;
new.le.hi = strtoi(argv[1], &e, 0);
if (*e)
return EC_ERROR_PARAM1;
new.le.lo = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
ccprintf("Time: 0x%016llx = %.6lld s\n", new.val, new.val);
force_time(new);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(forcetime, command_force_time, "hi lo",
"Force current time");
#endif
#ifdef CONFIG_CMD_GETTIME
static int command_get_time(int argc, const char **argv)
{
timestamp_t ts = get_time();
ccprintf("Time: 0x%016llx = %.6lld s\n", ts.val, ts.val);
return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(gettime, command_get_time, NULL,
"Print current time");
#endif
#ifdef CONFIG_CMD_TIMERINFO
static int command_timer_info(int argc, const char **argv)
{
timer_print_info();
return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(timerinfo, command_timer_info, NULL,
"Print timer info");
#endif
|