summaryrefslogtreecommitdiff
path: root/common/uart_buffering.c
blob: 7e942c7a3913094f60945a7c9b6bbac38a58dcff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/* Copyright 2012 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* Common code to do UART buffering and printing */

#include <stdarg.h>

#include "common.h"
#include "console.h"
#include "hooks.h"
#include "host_command.h"
#include "link_defs.h"
#include "printf.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "uart.h"
#include "util.h"

/* Macros to advance in the circular buffers */
#define TX_BUF_NEXT(i) (((i) + 1) & (CONFIG_UART_TX_BUF_SIZE - 1))
#define RX_BUF_NEXT(i) (((i) + 1) & (CONFIG_UART_RX_BUF_SIZE - 1))
#define RX_BUF_PREV(i) (((i)-1) & (CONFIG_UART_RX_BUF_SIZE - 1))

/* Macros to calculate difference of pointers in the circular buffers. */
#define TX_BUF_DIFF(i, j) (((i) - (j)) & (CONFIG_UART_TX_BUF_SIZE - 1))
#define RX_BUF_DIFF(i, j) (((i) - (j)) & (CONFIG_UART_RX_BUF_SIZE - 1))

/* Check if both UART TX/RX buffer sizes are power of two. */
BUILD_ASSERT((CONFIG_UART_TX_BUF_SIZE & (CONFIG_UART_TX_BUF_SIZE - 1)) == 0);
BUILD_ASSERT((CONFIG_UART_RX_BUF_SIZE & (CONFIG_UART_RX_BUF_SIZE - 1)) == 0);

/*
 * Interval between rechecking the receive DMA head pointer, after a character
 * of input has been detected by the normal tick task.  There will be
 * CONFIG_UART_RX_DMA_RECHECKS rechecks between this tick and the next tick.
 */
#define RX_DMA_RECHECK_INTERVAL \
	(HOOK_TICK_INTERVAL / (CONFIG_UART_RX_DMA_RECHECKS + 1))

/* Transmit and receive buffers */
static volatile char tx_buf[CONFIG_UART_TX_BUF_SIZE] __uncached
	__preserved_logs(tx_buf);
static volatile int tx_buf_head __preserved_logs(tx_buf_head);
static volatile int tx_buf_tail __preserved_logs(tx_buf_tail);
static volatile char rx_buf[CONFIG_UART_RX_BUF_SIZE] __uncached;
static volatile int rx_buf_head;
static volatile int rx_buf_tail;
static int tx_snapshot_head;
static int tx_snapshot_tail;
static int tx_last_snapshot_head;
static int tx_next_snapshot_head;
static int tx_checksum __preserved_logs(tx_checksum);

static int uart_buffer_calc_checksum(void)
{
	return tx_buf_head ^ tx_buf_tail;
}

void uart_init_buffer(void)
{
	if (tx_checksum != uart_buffer_calc_checksum() ||
	    !IN_RANGE(tx_buf_head, 0, CONFIG_UART_TX_BUF_SIZE - 1) ||
	    !IN_RANGE(tx_buf_tail, 0, CONFIG_UART_TX_BUF_SIZE - 1)) {
		/*
		 * NOTE:
		 * We are here because EC cold reset or RO/RW's preserve_logs
		 * section are different.
		 */
		tx_buf_head = 0;
		tx_buf_tail = 0;
		tx_checksum = 0;
	}
}

int uart_tx_char_raw(void *context, int c)
{
	int tx_buf_next, tx_buf_new_tail;

#if defined CONFIG_POLLING_UART
	(void)tx_buf_next;
	(void)tx_buf_new_tail;
	uart_write_char(c);
#else

	tx_buf_next = TX_BUF_NEXT(tx_buf_head);
	if (tx_buf_next == tx_buf_tail)
		return 1;

	/*
	 * If we do a READ_RECENT, the buffer may have wrapped around, and
	 * we'll drop most of the logs in this case. Make sure the place
	 * we read from in that case is always ahead of the new tx_buf_head.
	 *
	 * We also want to make sure that the next time we snapshot and want
	 * to READ_RECENT, we don't start reading from a stale tail.
	 */
	tx_buf_new_tail = TX_BUF_NEXT(tx_buf_next);
	if (tx_buf_next == tx_last_snapshot_head &&
	    tx_last_snapshot_head != tx_snapshot_head)
		tx_last_snapshot_head = tx_buf_new_tail;
	if (tx_buf_next == tx_next_snapshot_head)
		tx_next_snapshot_head = tx_buf_new_tail;

	tx_buf[tx_buf_head] = c;
	tx_buf_head = tx_buf_next;

	if (IS_ENABLED(CONFIG_PRESERVE_LOGS))
		tx_checksum = uart_buffer_calc_checksum();
#endif
	return 0;
}

#ifdef CONFIG_UART_TX_DMA

/**
 * Process UART output via DMA
 */
void uart_process_output(void)
{
	/* Size of current DMA transfer */
	static int tx_dma_in_progress;

	/*
	 * Get head pointer now, to avoid math problems if some other task
	 * or interrupt adds output during this call.
	 */
	int head = tx_buf_head;

	/* If DMA is still busy, nothing to do. */
	if (!uart_tx_dma_ready())
		return;

	/* If a previous DMA transfer completed, free up the buffer it used */
	if (tx_dma_in_progress) {
		tx_buf_tail = (tx_buf_tail + tx_dma_in_progress) &
			      (CONFIG_UART_TX_BUF_SIZE - 1);
		tx_dma_in_progress = 0;

		if (IS_ENABLED(CONFIG_PRESERVE_LOGS))
			tx_checksum = uart_buffer_calc_checksum();
	}

	/* Disable DMA-done interrupt if nothing to send */
	if (head == tx_buf_tail) {
		uart_tx_stop();
		return;
	}

	/*
	 * Get the largest contiguous block of output.  If the transmit buffer
	 * wraps, only use the part before the wrap.
	 */
	tx_dma_in_progress =
		(head > tx_buf_tail ? head : CONFIG_UART_TX_BUF_SIZE) -
		tx_buf_tail;

	uart_tx_dma_start((char *)(tx_buf + tx_buf_tail), tx_dma_in_progress);
}

#else /* !CONFIG_UART_TX_DMA */

void uart_process_output(void)
{
	/* Copy output from buffer until TX fifo full or output buffer empty */
	while (uart_tx_ready() && (tx_buf_head != tx_buf_tail)) {
		uart_write_char(tx_buf[tx_buf_tail]);
		tx_buf_tail = TX_BUF_NEXT(tx_buf_tail);

		if (IS_ENABLED(CONFIG_PRESERVE_LOGS))
			tx_checksum = uart_buffer_calc_checksum();
	}

	/* If output buffer is empty, disable transmit interrupt */
	if (tx_buf_tail == tx_buf_head)
		uart_tx_stop();
}

#endif /* !CONFIG_UART_TX_DMA */

#ifdef CONFIG_UART_RX_DMA
#ifdef CONFIG_UART_INPUT_FILTER /* TODO(crosbug.com/p/36745): */
#error "Filtering the UART input with DMA enabled is NOT SUPPORTED!"
#endif

void uart_process_input(void);
DECLARE_DEFERRED(uart_process_input);

void uart_process_input(void)
{
	static int fast_rechecks;
	int cur_head = rx_buf_head;

	/* Update receive buffer head from current DMA receive pointer */
	rx_buf_head = uart_rx_dma_head();

	if (rx_buf_head != cur_head) {
		console_has_input();
		fast_rechecks = CONFIG_UART_RX_DMA_RECHECKS;
	}

	/*
	 * Input is checked once a tick when the console is idle.  When input
	 * is received, check more frequently for a bit, so that the console is
	 * more responsive.
	 */
	if (fast_rechecks) {
		fast_rechecks--;
		hook_call_deferred(&uart_process_input_data,
				   RX_DMA_RECHECK_INTERVAL);
	}
}
DECLARE_HOOK(HOOK_TICK, uart_process_input, HOOK_PRIO_DEFAULT);

#else /* !CONFIG_UART_RX_DMA */

void uart_process_input(void)
{
	int got_input = 0;

	/* Copy input from buffer until RX fifo empty */
	while (uart_rx_available()) {
		int c = uart_read_char();
		int rx_buf_next = RX_BUF_NEXT(rx_buf_head);

#ifdef CONFIG_UART_INPUT_FILTER
		/* Intercept the input before it goes to the console */
		if (uart_input_filter(c))
			continue;
#endif

		if (rx_buf_next != rx_buf_tail) {
			/* Buffer all other input */
			rx_buf[rx_buf_head] = c;
			rx_buf_head = rx_buf_next;
			got_input = 1;
		}
	}

	if (got_input)
		console_has_input();
}

void uart_clear_input(void)
{
	int scratch __attribute__((unused));
	while (uart_rx_available())
		scratch = uart_read_char();
	rx_buf_head = rx_buf_tail = 0;
}

#endif /* !CONFIG_UART_RX_DMA */

void uart_flush_output(void)
{
	/* If UART not initialized ignore flush request. */
	if (!uart_init_done())
		return;

	/* Loop until buffer is empty */
	while (tx_buf_head != tx_buf_tail) {
		if (in_interrupt_context() || !is_interrupt_enabled()) {
			/*
			 * Explicitly process UART output, since the UART
			 * interrupt may not be able to preempt the interrupt
			 * we're in now.
			 */
			uart_process_output();
		} else {
			/*
			 * It's possible we switched from a previous context
			 * which was doing a printf() or puts() but hadn't
			 * enabled the UART interrupt.  Check if the interrupt
			 * is disabled, and if so, re-enable and trigger it.
			 * Note that this check is inside the while loop, so
			 * we'll be safe even if the context switches away from
			 * us to another partial printf() and back.
			 */
			uart_tx_start();
		}
	}

	/* Wait for transmit FIFO empty */
	uart_tx_flush();
}

int uart_getc(void)
{
	/* Look for a non-flow-control character */
	while (rx_buf_tail != rx_buf_head) {
		int c = rx_buf[rx_buf_tail];
		rx_buf_tail = RX_BUF_NEXT(rx_buf_tail);

		return c;
	}

	/* If we're still here, no input */
	return -1;
}

int uart_buffer_empty(void)
{
	return tx_buf_head == tx_buf_tail;
}

int uart_buffer_full(void)
{
	return TX_BUF_NEXT(tx_buf_head) == tx_buf_tail;
}

#ifdef CONFIG_UART_RX_DMA
static void uart_rx_dma_init(void)
{
	/* Start receiving */
	uart_rx_dma_start((char *)rx_buf, CONFIG_UART_RX_BUF_SIZE);
}
DECLARE_HOOK(HOOK_INIT, uart_rx_dma_init, HOOK_PRIO_DEFAULT);
#endif

enum ec_status uart_console_read_buffer_init(void)
{
	/* Assume the whole circular buffer is full */
	tx_snapshot_head = tx_buf_head;
	tx_snapshot_tail = TX_BUF_NEXT(tx_snapshot_head);
	/* Set up pointer for just the new part of the buffer */
	tx_last_snapshot_head = tx_next_snapshot_head;
	tx_next_snapshot_head = tx_buf_head;

	/*
	 * Immediately skip any unused bytes.  This doesn't always work,
	 * because a higher-priority task or interrupt handler can write to the
	 * buffer while we're scanning it.  This is acceptable because this
	 * command is only for debugging, and the failure mode is a bit of
	 * garbage at the beginning of the saved output.  The saved buffer
	 * could also be overwritten by the head coming completely back around
	 * before we finish.  The alternative would be to make a full copy of
	 * the transmit buffer, but that requires a lot of RAM.
	 */
	while (tx_snapshot_tail != tx_snapshot_head) {
		if (tx_buf[tx_snapshot_tail])
			break;
		tx_snapshot_tail = TX_BUF_NEXT(tx_snapshot_tail);
	}

	return EC_RES_SUCCESS;
}

int uart_console_read_buffer(uint8_t type, char *dest, uint16_t dest_size,
			     uint16_t *write_count)
{
	int *tail;

	switch (type) {
	case CONSOLE_READ_NEXT:
		tail = &tx_snapshot_tail;
		break;
	case CONSOLE_READ_RECENT:
		tail = &tx_last_snapshot_head;
		break;
	default:
		return EC_RES_INVALID_PARAM;
	}

	/* If no snapshot data, return empty response */
	if (tx_snapshot_head == *tail)
		return EC_RES_SUCCESS;

	/* Copy data to response */
	while (*tail != tx_snapshot_head && *write_count < dest_size - 1) {
		/*
		 * Copy only non-zero bytes, so that we don't copy unused
		 * bytes if the buffer hasn't completely rolled at boot.
		 */
		if (tx_buf[*tail]) {
			*(dest++) = tx_buf[*tail];
			(*write_count)++;
		}

		*tail = TX_BUF_NEXT(*tail);
	}

	/* Null-terminate */
	*(dest++) = '\0';
	(*write_count)++;

	return EC_RES_SUCCESS;
}