summaryrefslogtreecommitdiff
path: root/lib/sha256.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/sha256.c')
-rw-r--r--lib/sha256.c268
1 files changed, 149 insertions, 119 deletions
diff --git a/lib/sha256.c b/lib/sha256.c
index d23c509..0be8fd2 100644
--- a/lib/sha256.c
+++ b/lib/sha256.c
@@ -1,12 +1,12 @@
/* sha256.c - Functions to compute SHA256 and SHA224 message digest of files or
memory blocks according to the NIST specification FIPS-180-2.
- Copyright (C) 2005, 2006 Free Software Foundation, Inc.
+ Copyright (C) 2005-2006, 2008-2016 Free Software Foundation, Inc.
- This program is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by the
- Free Software Foundation; either version 2, or (at your option) any
- later version.
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
@@ -14,8 +14,7 @@
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software Foundation,
- Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Written by David Madore, considerably copypasting from
Scott G. Miller's sha1.c
@@ -23,9 +22,14 @@
#include <config.h>
+#if HAVE_OPENSSL_SHA256
+# define GL_OPENSSL_INLINE _GL_EXTERN_INLINE
+#endif
#include "sha256.h"
-#include <stddef.h>
+#include <stdalign.h>
+#include <stdint.h>
+#include <stdlib.h>
#include <string.h>
#if USE_UNLOCKED_IO
@@ -39,11 +43,12 @@
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#endif
-#define BLOCKSIZE 4096
+#define BLOCKSIZE 32768
#if BLOCKSIZE % 64 != 0
# error "invalid BLOCKSIZE"
#endif
+#if ! HAVE_OPENSSL_SHA256
/* This array contains the bytes used to pad the buffer to the next
64-byte boundary. */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
@@ -51,7 +56,7 @@ static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
/*
Takes a pointer to a 256 bit block of data (eight 32 bit ints) and
- intializes it to the start constants of the SHA256 algorithm. This
+ initializes it to the start constants of the SHA256 algorithm. This
must be called before using hash in the call to sha256_hash
*/
void
@@ -86,18 +91,25 @@ sha224_init_ctx (struct sha256_ctx *ctx)
ctx->buflen = 0;
}
-/* Put result from CTX in first 32 bytes following RESBUF. The result
- must be in little endian byte order.
+/* Copy the value from v into the memory location pointed to by *cp,
+ If your architecture allows unaligned access this is equivalent to
+ * (uint32_t *) cp = v */
+static void
+set_uint32 (char *cp, uint32_t v)
+{
+ memcpy (cp, &v, sizeof v);
+}
- IMPORTANT: On some systems it is required that RESBUF is correctly
- aligned for a 32-bit value. */
+/* Put result from CTX in first 32 bytes following RESBUF. The result
+ must be in little endian byte order. */
void *
sha256_read_ctx (const struct sha256_ctx *ctx, void *resbuf)
{
int i;
+ char *r = resbuf;
for (i = 0; i < 8; i++)
- ((uint32_t *) resbuf)[i] = SWAP (ctx->state[i]);
+ set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
return resbuf;
}
@@ -106,23 +118,21 @@ void *
sha224_read_ctx (const struct sha256_ctx *ctx, void *resbuf)
{
int i;
+ char *r = resbuf;
for (i = 0; i < 7; i++)
- ((uint32_t *) resbuf)[i] = SWAP (ctx->state[i]);
+ set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
return resbuf;
}
/* Process the remaining bytes in the internal buffer and the usual
- prolog according to the standard and write the result to RESBUF.
-
- IMPORTANT: On some systems it is required that RESBUF is correctly
- aligned for a 32-bit value. */
+ prolog according to the standard and write the result to RESBUF. */
static void
sha256_conclude_ctx (struct sha256_ctx *ctx)
{
/* Take yet unprocessed bytes into account. */
- uint32_t bytes = ctx->buflen;
+ size_t bytes = ctx->buflen;
size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
/* Now count remaining bytes. */
@@ -130,9 +140,13 @@ sha256_conclude_ctx (struct sha256_ctx *ctx)
if (ctx->total[0] < bytes)
++ctx->total[1];
- /* Put the 64-bit file length in *bits* at the end of the buffer. */
- ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
- ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
+ /* Put the 64-bit file length in *bits* at the end of the buffer.
+ Use set_uint32 rather than a simple assignment, to avoid risk of
+ unaligned access. */
+ set_uint32 ((char *) &ctx->buffer[size - 2],
+ SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)));
+ set_uint32 ((char *) &ctx->buffer[size - 1],
+ SWAP (ctx->total[0] << 3));
memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
@@ -153,6 +167,7 @@ sha224_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
sha256_conclude_ctx (ctx);
return sha224_read_ctx (ctx, resbuf);
}
+#endif
/* Compute SHA256 message digest for bytes read from STREAM. The
resulting message digest number will be written into the 32 bytes
@@ -161,9 +176,12 @@ int
sha256_stream (FILE *stream, void *resblock)
{
struct sha256_ctx ctx;
- char buffer[BLOCKSIZE + 72];
size_t sum;
+ char *buffer = malloc (BLOCKSIZE + 72);
+ if (!buffer)
+ return 1;
+
/* Initialize the computation context. */
sha256_init_ctx (&ctx);
@@ -171,40 +189,43 @@ sha256_stream (FILE *stream, void *resblock)
while (1)
{
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
- computation function processes the whole buffer so that with the
- next round of the loop another block can be read. */
+ computation function processes the whole buffer so that with the
+ next round of the loop another block can be read. */
size_t n;
sum = 0;
/* Read block. Take care for partial reads. */
while (1)
- {
- n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
-
- sum += n;
-
- if (sum == BLOCKSIZE)
- break;
-
- if (n == 0)
- {
- /* Check for the error flag IFF N == 0, so that we don't
- exit the loop after a partial read due to e.g., EAGAIN
- or EWOULDBLOCK. */
- if (ferror (stream))
- return 1;
- goto process_partial_block;
- }
-
- /* We've read at least one byte, so ignore errors. But always
- check for EOF, since feof may be true even though N > 0.
- Otherwise, we could end up calling fread after EOF. */
- if (feof (stream))
- goto process_partial_block;
- }
+ {
+ n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
+
+ sum += n;
+
+ if (sum == BLOCKSIZE)
+ break;
+
+ if (n == 0)
+ {
+ /* Check for the error flag IFF N == 0, so that we don't
+ exit the loop after a partial read due to e.g., EAGAIN
+ or EWOULDBLOCK. */
+ if (ferror (stream))
+ {
+ free (buffer);
+ return 1;
+ }
+ goto process_partial_block;
+ }
+
+ /* We've read at least one byte, so ignore errors. But always
+ check for EOF, since feof may be true even though N > 0.
+ Otherwise, we could end up calling fread after EOF. */
+ if (feof (stream))
+ goto process_partial_block;
+ }
/* Process buffer with BLOCKSIZE bytes. Note that
- BLOCKSIZE % 64 == 0
+ BLOCKSIZE % 64 == 0
*/
sha256_process_block (buffer, BLOCKSIZE, &ctx);
}
@@ -217,6 +238,7 @@ sha256_stream (FILE *stream, void *resblock)
/* Construct result in desired memory. */
sha256_finish_ctx (&ctx, resblock);
+ free (buffer);
return 0;
}
@@ -225,9 +247,12 @@ int
sha224_stream (FILE *stream, void *resblock)
{
struct sha256_ctx ctx;
- char buffer[BLOCKSIZE + 72];
size_t sum;
+ char *buffer = malloc (BLOCKSIZE + 72);
+ if (!buffer)
+ return 1;
+
/* Initialize the computation context. */
sha224_init_ctx (&ctx);
@@ -235,40 +260,43 @@ sha224_stream (FILE *stream, void *resblock)
while (1)
{
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
- computation function processes the whole buffer so that with the
- next round of the loop another block can be read. */
+ computation function processes the whole buffer so that with the
+ next round of the loop another block can be read. */
size_t n;
sum = 0;
/* Read block. Take care for partial reads. */
while (1)
- {
- n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
-
- sum += n;
-
- if (sum == BLOCKSIZE)
- break;
-
- if (n == 0)
- {
- /* Check for the error flag IFF N == 0, so that we don't
- exit the loop after a partial read due to e.g., EAGAIN
- or EWOULDBLOCK. */
- if (ferror (stream))
- return 1;
- goto process_partial_block;
- }
-
- /* We've read at least one byte, so ignore errors. But always
- check for EOF, since feof may be true even though N > 0.
- Otherwise, we could end up calling fread after EOF. */
- if (feof (stream))
- goto process_partial_block;
- }
+ {
+ n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
+
+ sum += n;
+
+ if (sum == BLOCKSIZE)
+ break;
+
+ if (n == 0)
+ {
+ /* Check for the error flag IFF N == 0, so that we don't
+ exit the loop after a partial read due to e.g., EAGAIN
+ or EWOULDBLOCK. */
+ if (ferror (stream))
+ {
+ free (buffer);
+ return 1;
+ }
+ goto process_partial_block;
+ }
+
+ /* We've read at least one byte, so ignore errors. But always
+ check for EOF, since feof may be true even though N > 0.
+ Otherwise, we could end up calling fread after EOF. */
+ if (feof (stream))
+ goto process_partial_block;
+ }
/* Process buffer with BLOCKSIZE bytes. Note that
- BLOCKSIZE % 64 == 0
+ BLOCKSIZE % 64 == 0
*/
sha256_process_block (buffer, BLOCKSIZE, &ctx);
}
@@ -281,9 +309,11 @@ sha224_stream (FILE *stream, void *resblock)
/* Construct result in desired memory. */
sha224_finish_ctx (&ctx, resblock);
+ free (buffer);
return 0;
}
+#if ! HAVE_OPENSSL_SHA256
/* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The
result is always in little endian byte order, so that a byte-wise
output yields to the wanted ASCII representation of the message
@@ -332,15 +362,15 @@ sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx)
ctx->buflen += add;
if (ctx->buflen > 64)
- {
- sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
+ {
+ sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
- ctx->buflen &= 63;
- /* The regions in the following copy operation cannot overlap. */
- memcpy (ctx->buffer,
- &((char *) ctx->buffer)[(left_over + add) & ~63],
- ctx->buflen);
- }
+ ctx->buflen &= 63;
+ /* The regions in the following copy operation cannot overlap. */
+ memcpy (ctx->buffer,
+ &((char *) ctx->buffer)[(left_over + add) & ~63],
+ ctx->buflen);
+ }
buffer = (const char *) buffer + add;
len -= add;
@@ -350,22 +380,21 @@ sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx)
if (len >= 64)
{
#if !_STRING_ARCH_unaligned
-# define alignof(type) offsetof (struct { char c; type x; }, x)
-# define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
+# define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0)
if (UNALIGNED_P (buffer))
- while (len > 64)
- {
- sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
- buffer = (const char *) buffer + 64;
- len -= 64;
- }
+ while (len > 64)
+ {
+ sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
+ buffer = (const char *) buffer + 64;
+ len -= 64;
+ }
else
#endif
- {
- sha256_process_block (buffer, len & ~63, ctx);
- buffer = (const char *) buffer + (len & ~63);
- len &= 63;
- }
+ {
+ sha256_process_block (buffer, len & ~63, ctx);
+ buffer = (const char *) buffer + (len & ~63);
+ len &= 63;
+ }
}
/* Move remaining bytes in internal buffer. */
@@ -376,11 +405,11 @@ sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx)
memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
left_over += len;
if (left_over >= 64)
- {
- sha256_process_block (ctx->buffer, 64, ctx);
- left_over -= 64;
- memcpy (ctx->buffer, &ctx->buffer[16], left_over);
- }
+ {
+ sha256_process_block (ctx->buffer, 64, ctx);
+ left_over -= 64;
+ memcpy (ctx->buffer, &ctx->buffer[16], left_over);
+ }
ctx->buflen = left_over;
}
}
@@ -431,13 +460,13 @@ sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
uint32_t f = ctx->state[5];
uint32_t g = ctx->state[6];
uint32_t h = ctx->state[7];
+ uint32_t lolen = len;
/* First increment the byte count. FIPS PUB 180-2 specifies the possible
length of the file up to 2^64 bits. Here we only compute the
number of bytes. Do a double word increment. */
- ctx->total[0] += len;
- if (ctx->total[0] < len)
- ++ctx->total[1];
+ ctx->total[0] += lolen;
+ ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
#define rol(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define S0(x) (rol(x,25)^rol(x,14)^(x>>3))
@@ -446,16 +475,16 @@ sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
#define SS1(x) (rol(x,26)^rol(x,21)^rol(x,7))
#define M(I) ( tm = S1(x[(I-2)&0x0f]) + x[(I-7)&0x0f] \
- + S0(x[(I-15)&0x0f]) + x[I&0x0f] \
- , x[I&0x0f] = tm )
+ + S0(x[(I-15)&0x0f]) + x[I&0x0f] \
+ , x[I&0x0f] = tm )
#define R(A,B,C,D,E,F,G,H,K,M) do { t0 = SS0(A) + F2(A,B,C); \
t1 = H + SS1(E) \
+ F1(E,F,G) \
- + K \
- + M; \
- D += t1; H = t0 + t1; \
- } while(0)
+ + K \
+ + M; \
+ D += t1; H = t0 + t1; \
+ } while(0)
while (words < endp)
{
@@ -464,10 +493,10 @@ sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
int t;
/* FIXME: see sha1.c for a better implementation. */
for (t = 0; t < 16; t++)
- {
- x[t] = SWAP (*words);
- words++;
- }
+ {
+ x[t] = SWAP (*words);
+ words++;
+ }
R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
@@ -544,3 +573,4 @@ sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
h = ctx->state[7] += h;
}
}
+#endif