summaryrefslogtreecommitdiff
path: root/Doc/howto/instrumentation.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Doc/howto/instrumentation.rst')
-rw-r--r--Doc/howto/instrumentation.rst408
1 files changed, 408 insertions, 0 deletions
diff --git a/Doc/howto/instrumentation.rst b/Doc/howto/instrumentation.rst
new file mode 100644
index 0000000000..7fca9aac7b
--- /dev/null
+++ b/Doc/howto/instrumentation.rst
@@ -0,0 +1,408 @@
+.. highlight:: shell-session
+
+.. _instrumentation:
+
+===============================================
+Instrumenting CPython with DTrace and SystemTap
+===============================================
+
+:author: David Malcolm
+:author: Ɓukasz Langa
+
+DTrace and SystemTap are monitoring tools, each providing a way to inspect
+what the processes on a computer system are doing. They both use
+domain-specific languages allowing a user to write scripts which:
+
+ - filter which processes are to be observed
+ - gather data from the processes of interest
+ - generate reports on the data
+
+As of Python 3.6, CPython can be built with embedded "markers", also
+known as "probes", that can be observed by a DTrace or SystemTap script,
+making it easier to monitor what the CPython processes on a system are
+doing.
+
+.. impl-detail::
+
+ DTrace markers are implementation details of the CPython interpreter.
+ No guarantees are made about probe compatibility between versions of
+ CPython. DTrace scripts can stop working or work incorrectly without
+ warning when changing CPython versions.
+
+
+Enabling the static markers
+---------------------------
+
+macOS comes with built-in support for DTrace. On Linux, in order to
+build CPython with the embedded markers for SystemTap, the SystemTap
+development tools must be installed.
+
+On a Linux machine, this can be done via::
+
+ $ yum install systemtap-sdt-devel
+
+or::
+
+ $ sudo apt-get install systemtap-sdt-dev
+
+
+CPython must then be configured ``--with-dtrace``:
+
+.. code-block:: none
+
+ checking for --with-dtrace... yes
+
+On macOS, you can list available DTrace probes by running a Python
+process in the background and listing all probes made available by the
+Python provider::
+
+ $ python3.6 -q &
+ $ sudo dtrace -l -P python$! # or: dtrace -l -m python3.6
+
+ ID PROVIDER MODULE FUNCTION NAME
+ 29564 python18035 python3.6 _PyEval_EvalFrameDefault function-entry
+ 29565 python18035 python3.6 dtrace_function_entry function-entry
+ 29566 python18035 python3.6 _PyEval_EvalFrameDefault function-return
+ 29567 python18035 python3.6 dtrace_function_return function-return
+ 29568 python18035 python3.6 collect gc-done
+ 29569 python18035 python3.6 collect gc-start
+ 29570 python18035 python3.6 _PyEval_EvalFrameDefault line
+ 29571 python18035 python3.6 maybe_dtrace_line line
+
+On Linux, you can verify if the SystemTap static markers are present in
+the built binary by seeing if it contains a ".note.stapsdt" section.
+
+::
+
+ $ readelf -S ./python | grep .note.stapsdt
+ [30] .note.stapsdt NOTE 0000000000000000 00308d78
+
+If you've built Python as a shared library (with --enable-shared), you
+need to look instead within the shared library. For example::
+
+ $ readelf -S libpython3.3dm.so.1.0 | grep .note.stapsdt
+ [29] .note.stapsdt NOTE 0000000000000000 00365b68
+
+Sufficiently modern readelf can print the metadata::
+
+ $ readelf -n ./python
+
+ Displaying notes found at file offset 0x00000254 with length 0x00000020:
+ Owner Data size Description
+ GNU 0x00000010 NT_GNU_ABI_TAG (ABI version tag)
+ OS: Linux, ABI: 2.6.32
+
+ Displaying notes found at file offset 0x00000274 with length 0x00000024:
+ Owner Data size Description
+ GNU 0x00000014 NT_GNU_BUILD_ID (unique build ID bitstring)
+ Build ID: df924a2b08a7e89f6e11251d4602022977af2670
+
+ Displaying notes found at file offset 0x002d6c30 with length 0x00000144:
+ Owner Data size Description
+ stapsdt 0x00000031 NT_STAPSDT (SystemTap probe descriptors)
+ Provider: python
+ Name: gc__start
+ Location: 0x00000000004371c3, Base: 0x0000000000630ce2, Semaphore: 0x00000000008d6bf6
+ Arguments: -4@%ebx
+ stapsdt 0x00000030 NT_STAPSDT (SystemTap probe descriptors)
+ Provider: python
+ Name: gc__done
+ Location: 0x00000000004374e1, Base: 0x0000000000630ce2, Semaphore: 0x00000000008d6bf8
+ Arguments: -8@%rax
+ stapsdt 0x00000045 NT_STAPSDT (SystemTap probe descriptors)
+ Provider: python
+ Name: function__entry
+ Location: 0x000000000053db6c, Base: 0x0000000000630ce2, Semaphore: 0x00000000008d6be8
+ Arguments: 8@%rbp 8@%r12 -4@%eax
+ stapsdt 0x00000046 NT_STAPSDT (SystemTap probe descriptors)
+ Provider: python
+ Name: function__return
+ Location: 0x000000000053dba8, Base: 0x0000000000630ce2, Semaphore: 0x00000000008d6bea
+ Arguments: 8@%rbp 8@%r12 -4@%eax
+
+The above metadata contains information for SystemTap describing how it
+can patch strategically-placed machine code instructions to enable the
+tracing hooks used by a SystemTap script.
+
+
+Static DTrace probes
+--------------------
+
+The following example DTrace script can be used to show the call/return
+hierarchy of a Python script, only tracing within the invocation of
+a function called "start". In other words, import-time function
+invocations are not going to be listed:
+
+.. code-block:: none
+
+ self int indent;
+
+ python$target:::function-entry
+ /copyinstr(arg1) == "start"/
+ {
+ self->trace = 1;
+ }
+
+ python$target:::function-entry
+ /self->trace/
+ {
+ printf("%d\t%*s:", timestamp, 15, probename);
+ printf("%*s", self->indent, "");
+ printf("%s:%s:%d\n", basename(copyinstr(arg0)), copyinstr(arg1), arg2);
+ self->indent++;
+ }
+
+ python$target:::function-return
+ /self->trace/
+ {
+ self->indent--;
+ printf("%d\t%*s:", timestamp, 15, probename);
+ printf("%*s", self->indent, "");
+ printf("%s:%s:%d\n", basename(copyinstr(arg0)), copyinstr(arg1), arg2);
+ }
+
+ python$target:::function-return
+ /copyinstr(arg1) == "start"/
+ {
+ self->trace = 0;
+ }
+
+It can be invoked like this::
+
+ $ sudo dtrace -q -s call_stack.d -c "python3.6 script.py"
+
+The output looks like this:
+
+.. code-block:: none
+
+ 156641360502280 function-entry:call_stack.py:start:23
+ 156641360518804 function-entry: call_stack.py:function_1:1
+ 156641360532797 function-entry: call_stack.py:function_3:9
+ 156641360546807 function-return: call_stack.py:function_3:10
+ 156641360563367 function-return: call_stack.py:function_1:2
+ 156641360578365 function-entry: call_stack.py:function_2:5
+ 156641360591757 function-entry: call_stack.py:function_1:1
+ 156641360605556 function-entry: call_stack.py:function_3:9
+ 156641360617482 function-return: call_stack.py:function_3:10
+ 156641360629814 function-return: call_stack.py:function_1:2
+ 156641360642285 function-return: call_stack.py:function_2:6
+ 156641360656770 function-entry: call_stack.py:function_3:9
+ 156641360669707 function-return: call_stack.py:function_3:10
+ 156641360687853 function-entry: call_stack.py:function_4:13
+ 156641360700719 function-return: call_stack.py:function_4:14
+ 156641360719640 function-entry: call_stack.py:function_5:18
+ 156641360732567 function-return: call_stack.py:function_5:21
+ 156641360747370 function-return:call_stack.py:start:28
+
+
+Static SystemTap markers
+------------------------
+
+The low-level way to use the SystemTap integration is to use the static
+markers directly. This requires you to explicitly state the binary file
+containing them.
+
+For example, this SystemTap script can be used to show the call/return
+hierarchy of a Python script:
+
+.. code-block:: none
+
+ probe process("python").mark("function__entry") {
+ filename = user_string($arg1);
+ funcname = user_string($arg2);
+ lineno = $arg3;
+
+ printf("%s => %s in %s:%d\\n",
+ thread_indent(1), funcname, filename, lineno);
+ }
+
+ probe process("python").mark("function__return") {
+ filename = user_string($arg1);
+ funcname = user_string($arg2);
+ lineno = $arg3;
+
+ printf("%s <= %s in %s:%d\\n",
+ thread_indent(-1), funcname, filename, lineno);
+ }
+
+It can be invoked like this::
+
+ $ stap \
+ show-call-hierarchy.stp \
+ -c "./python test.py"
+
+The output looks like this:
+
+.. code-block:: none
+
+ 11408 python(8274): => __contains__ in Lib/_abcoll.py:362
+ 11414 python(8274): => __getitem__ in Lib/os.py:425
+ 11418 python(8274): => encode in Lib/os.py:490
+ 11424 python(8274): <= encode in Lib/os.py:493
+ 11428 python(8274): <= __getitem__ in Lib/os.py:426
+ 11433 python(8274): <= __contains__ in Lib/_abcoll.py:366
+
+where the columns are:
+
+ - time in microseconds since start of script
+
+ - name of executable
+
+ - PID of process
+
+and the remainder indicates the call/return hierarchy as the script executes.
+
+For a `--enable-shared` build of CPython, the markers are contained within the
+libpython shared library, and the probe's dotted path needs to reflect this. For
+example, this line from the above example::
+
+ probe process("python").mark("function__entry") {
+
+should instead read::
+
+ probe process("python").library("libpython3.6dm.so.1.0").mark("function__entry") {
+
+(assuming a debug build of CPython 3.6)
+
+
+Available static markers
+------------------------
+
+.. I'm reusing the "c:function" type for markers
+
+.. c:function:: function__entry(str filename, str funcname, int lineno)
+
+ This marker indicates that execution of a Python function has begun.
+ It is only triggered for pure-Python (bytecode) functions.
+
+ The filename, function name, and line number are provided back to the
+ tracing script as positional arguments, which must be accessed using
+ ``$arg1``, ``$arg2``, ``$arg3``:
+
+ * ``$arg1`` : ``(const char *)`` filename, accessible using ``user_string($arg1)``
+
+ * ``$arg2`` : ``(const char *)`` function name, accessible using
+ ``user_string($arg2)``
+
+ * ``$arg3`` : ``int`` line number
+
+.. c:function:: function__return(str filename, str funcname, int lineno)
+
+ This marker is the converse of :c:func:`function__entry`, and indicates that
+ execution of a Python function has ended (either via ``return``, or via an
+ exception). It is only triggered for pure-Python (bytecode) functions.
+
+ The arguments are the same as for :c:func:`function__entry`
+
+.. c:function:: line(str filename, str funcname, int lineno)
+
+ This marker indicates a Python line is about to be executed. It is
+ the equivalent of line-by-line tracing with a Python profiler. It is
+ not triggered within C functions.
+
+ The arguments are the same as for :c:func:`function__entry`.
+
+.. c:function:: gc__start(int generation)
+
+ Fires when the Python interpreter starts a garbage collection cycle.
+ ``arg0`` is the generation to scan, like :func:`gc.collect()`.
+
+.. c:function:: gc__done(long collected)
+
+ Fires when the Python interpreter finishes a garbage collection
+ cycle. ``arg0`` is the number of collected objects.
+
+
+SystemTap Tapsets
+-----------------
+
+The higher-level way to use the SystemTap integration is to use a "tapset":
+SystemTap's equivalent of a library, which hides some of the lower-level
+details of the static markers.
+
+Here is a tapset file, based on a non-shared build of CPython:
+
+.. code-block:: none
+
+ /*
+ Provide a higher-level wrapping around the function__entry and
+ function__return markers:
+ \*/
+ probe python.function.entry = process("python").mark("function__entry")
+ {
+ filename = user_string($arg1);
+ funcname = user_string($arg2);
+ lineno = $arg3;
+ frameptr = $arg4
+ }
+ probe python.function.return = process("python").mark("function__return")
+ {
+ filename = user_string($arg1);
+ funcname = user_string($arg2);
+ lineno = $arg3;
+ frameptr = $arg4
+ }
+
+If this file is installed in SystemTap's tapset directory (e.g.
+``/usr/share/systemtap/tapset``), then these additional probepoints become
+available:
+
+.. c:function:: python.function.entry(str filename, str funcname, int lineno, frameptr)
+
+ This probe point indicates that execution of a Python function has begun.
+ It is only triggered for pure-python (bytecode) functions.
+
+.. c:function:: python.function.return(str filename, str funcname, int lineno, frameptr)
+
+ This probe point is the converse of :c:func:`python.function.return`, and
+ indicates that execution of a Python function has ended (either via
+ ``return``, or via an exception). It is only triggered for pure-python
+ (bytecode) functions.
+
+
+Examples
+--------
+This SystemTap script uses the tapset above to more cleanly implement the
+example given above of tracing the Python function-call hierarchy, without
+needing to directly name the static markers:
+
+.. code-block:: none
+
+ probe python.function.entry
+ {
+ printf("%s => %s in %s:%d\n",
+ thread_indent(1), funcname, filename, lineno);
+ }
+
+ probe python.function.return
+ {
+ printf("%s <= %s in %s:%d\n",
+ thread_indent(-1), funcname, filename, lineno);
+ }
+
+
+The following script uses the tapset above to provide a top-like view of all
+running CPython code, showing the top 20 most frequently-entered bytecode
+frames, each second, across the whole system:
+
+.. code-block:: none
+
+ global fn_calls;
+
+ probe python.function.entry
+ {
+ fn_calls[pid(), filename, funcname, lineno] += 1;
+ }
+
+ probe timer.ms(1000) {
+ printf("\033[2J\033[1;1H") /* clear screen \*/
+ printf("%6s %80s %6s %30s %6s\n",
+ "PID", "FILENAME", "LINE", "FUNCTION", "CALLS")
+ foreach ([pid, filename, funcname, lineno] in fn_calls- limit 20) {
+ printf("%6d %80s %6d %30s %6d\n",
+ pid, filename, lineno, funcname,
+ fn_calls[pid, filename, funcname, lineno]);
+ }
+ delete fn_calls;
+ }
+