diff options
Diffstat (limited to 'Lib/decimal.py')
-rw-r--r-- | Lib/decimal.py | 318 |
1 files changed, 180 insertions, 138 deletions
diff --git a/Lib/decimal.py b/Lib/decimal.py index cdb88bc6e9..faf9bf71d9 100644 --- a/Lib/decimal.py +++ b/Lib/decimal.py @@ -562,20 +562,46 @@ class Decimal(object): # tuple/list conversion (possibly from as_tuple()) if isinstance(value, (list,tuple)): if len(value) != 3: - raise ValueError('Invalid arguments') - if value[0] not in (0,1): - raise ValueError('Invalid sign') - for digit in value[1]: - if not isinstance(digit, int) or digit < 0: - raise ValueError("The second value in the tuple must be " - "composed of non negative integer elements.") + raise ValueError('Invalid tuple size in creation of Decimal ' + 'from list or tuple. The list or tuple ' + 'should have exactly three elements.') + # process sign. The isinstance test rejects floats + if not (isinstance(value[0], int) and value[0] in (0,1)): + raise ValueError("Invalid sign. The first value in the tuple " + "should be an integer; either 0 for a " + "positive number or 1 for a negative number.") self._sign = value[0] - self._int = tuple(value[1]) - if value[2] in ('F','n','N'): + if value[2] == 'F': + # infinity: value[1] is ignored + self._int = (0,) self._exp = value[2] self._is_special = True else: - self._exp = int(value[2]) + # process and validate the digits in value[1] + digits = [] + for digit in value[1]: + if isinstance(digit, int) and 0 <= digit <= 9: + # skip leading zeros + if digits or digit != 0: + digits.append(digit) + else: + raise ValueError("The second value in the tuple must " + "be composed of integers in the range " + "0 through 9.") + if value[2] in ('n', 'N'): + # NaN: digits form the diagnostic + self._int = tuple(digits) + self._exp = value[2] + self._is_special = True + elif isinstance(value[2], int): + # finite number: digits give the coefficient + self._int = tuple(digits or [0]) + self._exp = value[2] + self._is_special = False + else: + raise ValueError("The third value in the tuple must " + "be an integer, or one of the " + "strings 'F', 'n', 'N'.") return self if isinstance(value, float): @@ -679,14 +705,11 @@ class Decimal(object): return 0 def __bool__(self): - """return True if the number is non-zero. + """Return True if self is nonzero; otherwise return False. - False if self == 0 - True if self != 0 + NaNs and infinities are considered nonzero. """ - if self._is_special: - return True - return sum(self._int) != 0 + return self._is_special or self._int[0] != 0 def __cmp__(self, other): other = _convert_other(other) @@ -2252,15 +2275,18 @@ class Decimal(object): return ans def same_quantum(self, other): - """Test whether self and other have the same exponent. + """Return True if self and other have the same exponent; otherwise + return False. - same as self._exp == other._exp, except NaN == sNaN + If either operand is a special value, the following rules are used: + * return True if both operands are infinities + * return True if both operands are NaNs + * otherwise, return False. """ + other = _convert_other(other, raiseit=True) if self._is_special or other._is_special: - if self._isnan() or other._isnan(): - return self._isnan() and other._isnan() and True - if self._isinfinity() or other._isinfinity(): - return self._isinfinity() and other._isinfinity() and True + return (self.is_nan() and other.is_nan() or + self.is_infinite() and other.is_infinite()) return self._exp == other._exp def _rescale(self, exp, rounding): @@ -2743,84 +2769,60 @@ class Decimal(object): return ans def is_canonical(self): - """Returns 1 if self is canonical; otherwise returns 0.""" - return Dec_p1 + """Return True if self is canonical; otherwise return False. + + Currently, the encoding of a Decimal instance is always + canonical, so this method returns True for any Decimal. + """ + return True def is_finite(self): - """Returns 1 if self is finite, otherwise returns 0. + """Return True if self is finite; otherwise return False. - For it to be finite, it must be neither infinite nor a NaN. + A Decimal instance is considered finite if it is neither + infinite nor a NaN. """ - if self._is_special: - return Dec_0 - else: - return Dec_p1 + return not self._is_special def is_infinite(self): - """Returns 1 if self is an Infinite, otherwise returns 0.""" - if self._isinfinity(): - return Dec_p1 - else: - return Dec_0 + """Return True if self is infinite; otherwise return False.""" + return self._exp == 'F' def is_nan(self): - """Returns 1 if self is qNaN or sNaN, otherwise returns 0.""" - if self._isnan(): - return Dec_p1 - else: - return Dec_0 + """Return True if self is a qNaN or sNaN; otherwise return False.""" + return self._exp in ('n', 'N') def is_normal(self, context=None): - """Returns 1 if self is a normal number, otherwise returns 0.""" - if self._is_special: - return Dec_0 - if not self: - return Dec_0 + """Return True if self is a normal number; otherwise return False.""" + if self._is_special or not self: + return False if context is None: context = getcontext() - if context.Emin <= self.adjusted() <= context.Emax: - return Dec_p1 - else: - return Dec_0 + return context.Emin <= self.adjusted() <= context.Emax def is_qnan(self): - """Returns 1 if self is a quiet NaN, otherwise returns 0.""" - if self._isnan() == 1: - return Dec_p1 - else: - return Dec_0 + """Return True if self is a quiet NaN; otherwise return False.""" + return self._exp == 'n' def is_signed(self): - """Returns 1 if self is negative, otherwise returns 0.""" - return Decimal(self._sign) + """Return True if self is negative; otherwise return False.""" + return self._sign == 1 def is_snan(self): - """Returns 1 if self is a signaling NaN, otherwise returns 0.""" - if self._isnan() == 2: - return Dec_p1 - else: - return Dec_0 + """Return True if self is a signaling NaN; otherwise return False.""" + return self._exp == 'N' def is_subnormal(self, context=None): - """Returns 1 if self is subnormal, otherwise returns 0.""" - if self._is_special: - return Dec_0 - if not self: - return Dec_0 + """Return True if self is subnormal; otherwise return False.""" + if self._is_special or not self: + return False if context is None: context = getcontext() - - r = self._exp + len(self._int) - if r <= context.Emin: - return Dec_p1 - return Dec_0 + return self.adjusted() < context.Emin def is_zero(self): - """Returns 1 if self is a zero, otherwise returns 0.""" - if self: - return Dec_0 - else: - return Dec_p1 + """Return True if self is a zero; otherwise return False.""" + return not self._is_special and self._int[0] == 0 def _ln_exp_bound(self): """Compute a lower bound for the adjusted exponent of self.ln(). @@ -3883,138 +3885,145 @@ class Context(object): return a.fma(b, c, context=self) def is_canonical(self, a): - """Returns 1 if the operand is canonical; otherwise returns 0. + """Return True if the operand is canonical; otherwise return False. + + Currently, the encoding of a Decimal instance is always + canonical, so this method returns True for any Decimal. >>> ExtendedContext.is_canonical(Decimal('2.50')) - Decimal("1") + True """ - return Dec_p1 + return a.is_canonical() def is_finite(self, a): - """Returns 1 if the operand is finite, otherwise returns 0. + """Return True if the operand is finite; otherwise return False. - For it to be finite, it must be neither infinite nor a NaN. + A Decimal instance is considered finite if it is neither + infinite nor a NaN. >>> ExtendedContext.is_finite(Decimal('2.50')) - Decimal("1") + True >>> ExtendedContext.is_finite(Decimal('-0.3')) - Decimal("1") + True >>> ExtendedContext.is_finite(Decimal('0')) - Decimal("1") + True >>> ExtendedContext.is_finite(Decimal('Inf')) - Decimal("0") + False >>> ExtendedContext.is_finite(Decimal('NaN')) - Decimal("0") + False """ return a.is_finite() def is_infinite(self, a): - """Returns 1 if the operand is an Infinite, otherwise returns 0. + """Return True if the operand is infinite; otherwise return False. >>> ExtendedContext.is_infinite(Decimal('2.50')) - Decimal("0") + False >>> ExtendedContext.is_infinite(Decimal('-Inf')) - Decimal("1") + True >>> ExtendedContext.is_infinite(Decimal('NaN')) - Decimal("0") + False """ return a.is_infinite() def is_nan(self, a): - """Returns 1 if the operand is qNaN or sNaN, otherwise returns 0. + """Return True if the operand is a qNaN or sNaN; + otherwise return False. >>> ExtendedContext.is_nan(Decimal('2.50')) - Decimal("0") + False >>> ExtendedContext.is_nan(Decimal('NaN')) - Decimal("1") + True >>> ExtendedContext.is_nan(Decimal('-sNaN')) - Decimal("1") + True """ return a.is_nan() def is_normal(self, a): - """Returns 1 if the operand is a normal number, otherwise returns 0. + """Return True if the operand is a normal number; + otherwise return False. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.is_normal(Decimal('2.50')) - Decimal("1") + True >>> c.is_normal(Decimal('0.1E-999')) - Decimal("0") + False >>> c.is_normal(Decimal('0.00')) - Decimal("0") + False >>> c.is_normal(Decimal('-Inf')) - Decimal("0") + False >>> c.is_normal(Decimal('NaN')) - Decimal("0") + False """ return a.is_normal(context=self) def is_qnan(self, a): - """Returns 1 if the operand is a quiet NaN, otherwise returns 0. + """Return True if the operand is a quiet NaN; otherwise return False. >>> ExtendedContext.is_qnan(Decimal('2.50')) - Decimal("0") + False >>> ExtendedContext.is_qnan(Decimal('NaN')) - Decimal("1") + True >>> ExtendedContext.is_qnan(Decimal('sNaN')) - Decimal("0") + False """ return a.is_qnan() def is_signed(self, a): - """Returns 1 if the operand is negative, otherwise returns 0. + """Return True if the operand is negative; otherwise return False. >>> ExtendedContext.is_signed(Decimal('2.50')) - Decimal("0") + False >>> ExtendedContext.is_signed(Decimal('-12')) - Decimal("1") + True >>> ExtendedContext.is_signed(Decimal('-0')) - Decimal("1") + True """ return a.is_signed() def is_snan(self, a): - """Returns 1 if the operand is a signaling NaN, otherwise returns 0. + """Return True if the operand is a signaling NaN; + otherwise return False. >>> ExtendedContext.is_snan(Decimal('2.50')) - Decimal("0") + False >>> ExtendedContext.is_snan(Decimal('NaN')) - Decimal("0") + False >>> ExtendedContext.is_snan(Decimal('sNaN')) - Decimal("1") + True """ return a.is_snan() def is_subnormal(self, a): - """Returns 1 if the operand is subnormal, otherwise returns 0. + """Return True if the operand is subnormal; otherwise return False. >>> c = ExtendedContext.copy() >>> c.Emin = -999 >>> c.Emax = 999 >>> c.is_subnormal(Decimal('2.50')) - Decimal("0") + False >>> c.is_subnormal(Decimal('0.1E-999')) - Decimal("1") + True >>> c.is_subnormal(Decimal('0.00')) - Decimal("0") + False >>> c.is_subnormal(Decimal('-Inf')) - Decimal("0") + False >>> c.is_subnormal(Decimal('NaN')) - Decimal("0") + False """ return a.is_subnormal(context=self) def is_zero(self, a): - """Returns 1 if the operand is a zero, otherwise returns 0. + """Return True if the operand is a zero; otherwise return False. >>> ExtendedContext.is_zero(Decimal('0')) - Decimal("1") + True >>> ExtendedContext.is_zero(Decimal('2.50')) - Decimal("0") + False >>> ExtendedContext.is_zero(Decimal('-0E+2')) - Decimal("1") + True """ return a.is_zero() @@ -4937,7 +4946,7 @@ def _dlog10(c, e, p): c = _div_nearest(c, 10**-k) log_d = _ilog(c, M) # error < 5 + 22 = 27 - log_10 = _ilog(10*M, M) # error < 15 + log_10 = _log10_digits(p) # error < 1 log_d = _div_nearest(log_d*M, log_10) log_tenpower = f*M # exact else: @@ -4975,24 +4984,58 @@ def _dlog(c, e, p): # p <= 0: just approximate the whole thing by 0; error < 2.31 log_d = 0 - # compute approximation to 10**p*f*log(10), with error < 17 + # compute approximation to f*10**p*log(10), with error < 11. if f: - sign_f = [-1, 1][f > 0] - if p >= 0: - M = 10**p * abs(f) - else: - M = _div_nearest(abs(f), 10**-p) # M = 10**p*|f|, error <= 0.5 - - if M: - f_log_ten = sign_f*_ilog(10*M, M) # M*log(10), error <= 1.2 + 15 < 17 + extra = len(str(abs(f)))-1 + if p + extra >= 0: + # error in f * _log10_digits(p+extra) < |f| * 1 = |f| + # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11 + f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra) else: f_log_ten = 0 else: f_log_ten = 0 - # error in sum < 17+27 = 44; error after division < 0.44 + 0.5 < 1 + # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1 return _div_nearest(f_log_ten + log_d, 100) +class _Log10Memoize(object): + """Class to compute, store, and allow retrieval of, digits of the + constant log(10) = 2.302585.... This constant is needed by + Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__.""" + def __init__(self): + self.digits = "23025850929940456840179914546843642076011014886" + + def getdigits(self, p): + """Given an integer p >= 0, return floor(10**p)*log(10). + + For example, self.getdigits(3) returns 2302. + """ + # digits are stored as a string, for quick conversion to + # integer in the case that we've already computed enough + # digits; the stored digits should always be correct + # (truncated, not rounded to nearest). + if p < 0: + raise ValueError("p should be nonnegative") + + if p >= len(self.digits): + # compute p+3, p+6, p+9, ... digits; continue until at + # least one of the extra digits is nonzero + extra = 3 + while True: + # compute p+extra digits, correct to within 1ulp + M = 10**(p+extra+2) + digits = str(_div_nearest(_ilog(10*M, M), 100)) + if digits[-extra:] != '0'*extra: + break + extra += 3 + # keep all reliable digits so far; remove trailing zeros + # and next nonzero digit + self.digits = digits.rstrip('0')[:-1] + return int(self.digits[:p+1]) + +_log10_digits = _Log10Memoize().getdigits + def _iexp(x, M, L=8): """Given integers x and M, M > 0, such that x/M is small in absolute value, compute an integer approximation to M*exp(x/M). For 0 <= @@ -5034,7 +5077,7 @@ def _dexp(c, e, p): """Compute an approximation to exp(c*10**e), with p decimal places of precision. - Returns d, f such that: + Returns integers d, f such that: 10**(p-1) <= d <= 10**p, and (d-1)*10**f < exp(c*10**e) < (d+1)*10**f @@ -5047,19 +5090,18 @@ def _dexp(c, e, p): # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision p += 2 - # compute log10 with extra precision = adjusted exponent of c*10**e + # compute log(10) with extra precision = adjusted exponent of c*10**e extra = max(0, e + len(str(c)) - 1) q = p + extra - log10 = _dlog(10, 0, q) # error <= 1 - # compute quotient c*10**e/(log10/10**q) = c*10**(e+q)/log10, + # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q), # rounding down shift = e+q if shift >= 0: cshift = c*10**shift else: cshift = c//10**-shift - quot, rem = divmod(cshift, log10) + quot, rem = divmod(cshift, _log10_digits(q)) # reduce remainder back to original precision rem = _div_nearest(rem, 10**extra) |