summaryrefslogtreecommitdiff
path: root/Lib/test/test_math.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/test/test_math.py')
-rw-r--r--Lib/test/test_math.py326
1 files changed, 258 insertions, 68 deletions
diff --git a/Lib/test/test_math.py b/Lib/test/test_math.py
index 9a87d5d307..dddc889375 100644
--- a/Lib/test/test_math.py
+++ b/Lib/test/test_math.py
@@ -1,12 +1,14 @@
# Python test set -- math module
# XXXX Should not do tests around zero only
-from test.support import run_unittest, verbose
+from test.support import run_unittest, verbose, requires_IEEE_754
import unittest
import math
import os
import sys
import random
+import struct
+import sysconfig
eps = 1E-05
NAN = float('nan')
@@ -24,8 +26,130 @@ if __name__ == '__main__':
else:
file = __file__
test_dir = os.path.dirname(file) or os.curdir
+math_testcases = os.path.join(test_dir, 'math_testcases.txt')
test_file = os.path.join(test_dir, 'cmath_testcases.txt')
+def to_ulps(x):
+ """Convert a non-NaN float x to an integer, in such a way that
+ adjacent floats are converted to adjacent integers. Then
+ abs(ulps(x) - ulps(y)) gives the difference in ulps between two
+ floats.
+
+ The results from this function will only make sense on platforms
+ where C doubles are represented in IEEE 754 binary64 format.
+
+ """
+ n = struct.unpack('<q', struct.pack('<d', x))[0]
+ if n < 0:
+ n = ~(n+2**63)
+ return n
+
+def ulps_check(expected, got, ulps=20):
+ """Given non-NaN floats `expected` and `got`,
+ check that they're equal to within the given number of ulps.
+
+ Returns None on success and an error message on failure."""
+
+ ulps_error = to_ulps(got) - to_ulps(expected)
+ if abs(ulps_error) <= ulps:
+ return None
+ return "error = {} ulps; permitted error = {} ulps".format(ulps_error,
+ ulps)
+
+# Here's a pure Python version of the math.factorial algorithm, for
+# documentation and comparison purposes.
+#
+# Formula:
+#
+# factorial(n) = factorial_odd_part(n) << (n - count_set_bits(n))
+#
+# where
+#
+# factorial_odd_part(n) = product_{i >= 0} product_{0 < j <= n >> i; j odd} j
+#
+# The outer product above is an infinite product, but once i >= n.bit_length,
+# (n >> i) < 1 and the corresponding term of the product is empty. So only the
+# finitely many terms for 0 <= i < n.bit_length() contribute anything.
+#
+# We iterate downwards from i == n.bit_length() - 1 to i == 0. The inner
+# product in the formula above starts at 1 for i == n.bit_length(); for each i
+# < n.bit_length() we get the inner product for i from that for i + 1 by
+# multiplying by all j in {n >> i+1 < j <= n >> i; j odd}. In Python terms,
+# this set is range((n >> i+1) + 1 | 1, (n >> i) + 1 | 1, 2).
+
+def count_set_bits(n):
+ """Number of '1' bits in binary expansion of a nonnnegative integer."""
+ return 1 + count_set_bits(n & n - 1) if n else 0
+
+def partial_product(start, stop):
+ """Product of integers in range(start, stop, 2), computed recursively.
+ start and stop should both be odd, with start <= stop.
+
+ """
+ numfactors = (stop - start) >> 1
+ if not numfactors:
+ return 1
+ elif numfactors == 1:
+ return start
+ else:
+ mid = (start + numfactors) | 1
+ return partial_product(start, mid) * partial_product(mid, stop)
+
+def py_factorial(n):
+ """Factorial of nonnegative integer n, via "Binary Split Factorial Formula"
+ described at http://www.luschny.de/math/factorial/binarysplitfact.html
+
+ """
+ inner = outer = 1
+ for i in reversed(range(n.bit_length())):
+ inner *= partial_product((n >> i + 1) + 1 | 1, (n >> i) + 1 | 1)
+ outer *= inner
+ return outer << (n - count_set_bits(n))
+
+def acc_check(expected, got, rel_err=2e-15, abs_err = 5e-323):
+ """Determine whether non-NaN floats a and b are equal to within a
+ (small) rounding error. The default values for rel_err and
+ abs_err are chosen to be suitable for platforms where a float is
+ represented by an IEEE 754 double. They allow an error of between
+ 9 and 19 ulps."""
+
+ # need to special case infinities, since inf - inf gives nan
+ if math.isinf(expected) and got == expected:
+ return None
+
+ error = got - expected
+
+ permitted_error = max(abs_err, rel_err * abs(expected))
+ if abs(error) < permitted_error:
+ return None
+ return "error = {}; permitted error = {}".format(error,
+ permitted_error)
+
+def parse_mtestfile(fname):
+ """Parse a file with test values
+
+ -- starts a comment
+ blank lines, or lines containing only a comment, are ignored
+ other lines are expected to have the form
+ id fn arg -> expected [flag]*
+
+ """
+ with open(fname) as fp:
+ for line in fp:
+ # strip comments, and skip blank lines
+ if '--' in line:
+ line = line[:line.index('--')]
+ if not line.strip():
+ continue
+
+ lhs, rhs = line.split('->')
+ id, fn, arg = lhs.split()
+ rhs_pieces = rhs.split()
+ exp = rhs_pieces[0]
+ flags = rhs_pieces[1:]
+
+ yield (id, fn, float(arg), float(exp), flags)
+
def parse_testfile(fname):
"""Parse a file with test values
@@ -209,39 +333,39 @@ class MathTests(unittest.TestCase):
self.assertRaises(TypeError, math.ceil, t)
self.assertRaises(TypeError, math.ceil, t, 0)
- if float.__getformat__("double").startswith("IEEE"):
- def testCopysign(self):
- self.assertEqual(math.copysign(1, 42), 1.0)
- self.assertEqual(math.copysign(0., 42), 0.0)
- self.assertEqual(math.copysign(1., -42), -1.0)
- self.assertEqual(math.copysign(3, 0.), 3.0)
- self.assertEqual(math.copysign(4., -0.), -4.0)
-
- self.assertRaises(TypeError, math.copysign)
- # copysign should let us distinguish signs of zeros
- self.assertEqual(math.copysign(1., 0.), 1.)
- self.assertEqual(math.copysign(1., -0.), -1.)
- self.assertEqual(math.copysign(INF, 0.), INF)
- self.assertEqual(math.copysign(INF, -0.), NINF)
- self.assertEqual(math.copysign(NINF, 0.), INF)
- self.assertEqual(math.copysign(NINF, -0.), NINF)
- # and of infinities
- self.assertEqual(math.copysign(1., INF), 1.)
- self.assertEqual(math.copysign(1., NINF), -1.)
- self.assertEqual(math.copysign(INF, INF), INF)
- self.assertEqual(math.copysign(INF, NINF), NINF)
- self.assertEqual(math.copysign(NINF, INF), INF)
- self.assertEqual(math.copysign(NINF, NINF), NINF)
- self.assertTrue(math.isnan(math.copysign(NAN, 1.)))
- self.assertTrue(math.isnan(math.copysign(NAN, INF)))
- self.assertTrue(math.isnan(math.copysign(NAN, NINF)))
- self.assertTrue(math.isnan(math.copysign(NAN, NAN)))
- # copysign(INF, NAN) may be INF or it may be NINF, since
- # we don't know whether the sign bit of NAN is set on any
- # given platform.
- self.assertTrue(math.isinf(math.copysign(INF, NAN)))
- # similarly, copysign(2., NAN) could be 2. or -2.
- self.assertEqual(abs(math.copysign(2., NAN)), 2.)
+ @requires_IEEE_754
+ def testCopysign(self):
+ self.assertEqual(math.copysign(1, 42), 1.0)
+ self.assertEqual(math.copysign(0., 42), 0.0)
+ self.assertEqual(math.copysign(1., -42), -1.0)
+ self.assertEqual(math.copysign(3, 0.), 3.0)
+ self.assertEqual(math.copysign(4., -0.), -4.0)
+
+ self.assertRaises(TypeError, math.copysign)
+ # copysign should let us distinguish signs of zeros
+ self.assertEqual(math.copysign(1., 0.), 1.)
+ self.assertEqual(math.copysign(1., -0.), -1.)
+ self.assertEqual(math.copysign(INF, 0.), INF)
+ self.assertEqual(math.copysign(INF, -0.), NINF)
+ self.assertEqual(math.copysign(NINF, 0.), INF)
+ self.assertEqual(math.copysign(NINF, -0.), NINF)
+ # and of infinities
+ self.assertEqual(math.copysign(1., INF), 1.)
+ self.assertEqual(math.copysign(1., NINF), -1.)
+ self.assertEqual(math.copysign(INF, INF), INF)
+ self.assertEqual(math.copysign(INF, NINF), NINF)
+ self.assertEqual(math.copysign(NINF, INF), INF)
+ self.assertEqual(math.copysign(NINF, NINF), NINF)
+ self.assertTrue(math.isnan(math.copysign(NAN, 1.)))
+ self.assertTrue(math.isnan(math.copysign(NAN, INF)))
+ self.assertTrue(math.isnan(math.copysign(NAN, NINF)))
+ self.assertTrue(math.isnan(math.copysign(NAN, NAN)))
+ # copysign(INF, NAN) may be INF or it may be NINF, since
+ # we don't know whether the sign bit of NAN is set on any
+ # given platform.
+ self.assertTrue(math.isinf(math.copysign(INF, NAN)))
+ # similarly, copysign(2., NAN) could be 2. or -2.
+ self.assertEqual(abs(math.copysign(2., NAN)), 2.)
def testCos(self):
self.assertRaises(TypeError, math.cos)
@@ -287,18 +411,19 @@ class MathTests(unittest.TestCase):
self.ftest('fabs(1)', math.fabs(1), 1)
def testFactorial(self):
- def fact(n):
- result = 1
- for i in range(1, int(n)+1):
- result *= i
- return result
- values = list(range(10)) + [50, 100, 500]
- random.shuffle(values)
- for x in values:
- for cast in (int, float):
- self.assertEqual(math.factorial(cast(x)), fact(x), (x, fact(x), math.factorial(x)))
+ self.assertEqual(math.factorial(0), 1)
+ self.assertEqual(math.factorial(0.0), 1)
+ total = 1
+ for i in range(1, 1000):
+ total *= i
+ self.assertEqual(math.factorial(i), total)
+ self.assertEqual(math.factorial(float(i)), total)
+ self.assertEqual(math.factorial(i), py_factorial(i))
self.assertRaises(ValueError, math.factorial, -1)
+ self.assertRaises(ValueError, math.factorial, -1.0)
self.assertRaises(ValueError, math.factorial, math.pi)
+ self.assertRaises(OverflowError, math.factorial, sys.maxsize+1)
+ self.assertRaises(OverflowError, math.factorial, 10e100)
def testFloor(self):
self.assertRaises(TypeError, math.floor)
@@ -370,8 +495,7 @@ class MathTests(unittest.TestCase):
self.assertEqual(math.frexp(NINF)[0], NINF)
self.assertTrue(math.isnan(math.frexp(NAN)[0]))
- @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
- "test requires IEEE 754 doubles")
+ @requires_IEEE_754
@unittest.skipIf(HAVE_DOUBLE_ROUNDING,
"fsum is not exact on machines with double rounding")
def testFsum(self):
@@ -513,21 +637,17 @@ class MathTests(unittest.TestCase):
self.ftest('log(32,2)', math.log(32,2), 5)
self.ftest('log(10**40, 10)', math.log(10**40, 10), 40)
self.ftest('log(10**40, 10**20)', math.log(10**40, 10**20), 2)
- self.assertEqual(math.log(INF), INF)
+ self.ftest('log(10**1000)', math.log(10**1000),
+ 2302.5850929940457)
+ self.assertRaises(ValueError, math.log, -1.5)
+ self.assertRaises(ValueError, math.log, -10**1000)
self.assertRaises(ValueError, math.log, NINF)
+ self.assertEqual(math.log(INF), INF)
self.assertTrue(math.isnan(math.log(NAN)))
def testLog1p(self):
self.assertRaises(TypeError, math.log1p)
- self.ftest('log1p(1/e -1)', math.log1p(1/math.e-1), -1)
- self.ftest('log1p(0)', math.log1p(0), 0)
- self.ftest('log1p(e-1)', math.log1p(math.e-1), 1)
- self.ftest('log1p(1)', math.log1p(1), math.log(2))
- self.assertEqual(math.log1p(INF), INF)
- self.assertRaises(ValueError, math.log1p, NINF)
- self.assertTrue(math.isnan(math.log1p(NAN)))
n= 2**90
- self.assertAlmostEqual(math.log1p(n), 62.383246250395075)
self.assertAlmostEqual(math.log1p(n), math.log1p(float(n)))
def testLog10(self):
@@ -535,8 +655,11 @@ class MathTests(unittest.TestCase):
self.ftest('log10(0.1)', math.log10(0.1), -1)
self.ftest('log10(1)', math.log10(1), 0)
self.ftest('log10(10)', math.log10(10), 1)
- self.assertEqual(math.log(INF), INF)
+ self.ftest('log10(10**1000)', math.log10(10**1000), 1000.0)
+ self.assertRaises(ValueError, math.log10, -1.5)
+ self.assertRaises(ValueError, math.log10, -10**1000)
self.assertRaises(ValueError, math.log10, NINF)
+ self.assertEqual(math.log(INF), INF)
self.assertTrue(math.isnan(math.log10(NAN)))
def testModf(self):
@@ -764,11 +887,15 @@ class MathTests(unittest.TestCase):
self.ftest('tanh(inf)', math.tanh(INF), 1)
self.ftest('tanh(-inf)', math.tanh(NINF), -1)
self.assertTrue(math.isnan(math.tanh(NAN)))
+
+ @requires_IEEE_754
+ @unittest.skipIf(sysconfig.get_config_var('TANH_PRESERVES_ZERO_SIGN') == 0,
+ "system tanh() function doesn't copy the sign")
+ def testTanhSign(self):
# check that tanh(-0.) == -0. on IEEE 754 systems
- if float.__getformat__("double").startswith("IEEE"):
- self.assertEqual(math.tanh(-0.), -0.)
- self.assertEqual(math.copysign(1., math.tanh(-0.)),
- math.copysign(1., -0.))
+ self.assertEqual(math.tanh(-0.), -0.)
+ self.assertEqual(math.copysign(1., math.tanh(-0.)),
+ math.copysign(1., -0.))
def test_trunc(self):
self.assertEqual(math.trunc(1), 1)
@@ -795,12 +922,14 @@ class MathTests(unittest.TestCase):
self.assertRaises(TypeError, math.trunc, 1, 2)
self.assertRaises(TypeError, math.trunc, TestNoTrunc())
- # XXX Doesn't work because the method is looked up on
- # the type only.
- #t = TestNoTrunc()
- #t.__trunc__ = lambda *args: args
- #self.assertEqual((), math.trunc(t))
- #self.assertRaises(TypeError, math.trunc, t, 0)
+ def testIsfinite(self):
+ self.assertTrue(math.isfinite(0.0))
+ self.assertTrue(math.isfinite(-0.0))
+ self.assertTrue(math.isfinite(1.0))
+ self.assertTrue(math.isfinite(-1.0))
+ self.assertFalse(math.isfinite(float("nan")))
+ self.assertFalse(math.isfinite(float("inf")))
+ self.assertFalse(math.isfinite(float("-inf")))
def testIsnan(self):
self.assertTrue(math.isnan(float("nan")))
@@ -856,9 +985,8 @@ class MathTests(unittest.TestCase):
else:
self.fail("sqrt(-1) didn't raise ValueError")
+ @requires_IEEE_754
def test_testfile(self):
- if not float.__getformat__("double").startswith("IEEE"):
- return
for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
# Skip if either the input or result is complex, or if
# flags is nonempty
@@ -880,6 +1008,68 @@ class MathTests(unittest.TestCase):
self.fail(message)
self.ftest("%s:%s(%r)" % (id, fn, ar), result, er)
+ @requires_IEEE_754
+ def test_mtestfile(self):
+ ALLOWED_ERROR = 20 # permitted error, in ulps
+ fail_fmt = "{}:{}({!r}): expected {!r}, got {!r}"
+
+ failures = []
+ for id, fn, arg, expected, flags in parse_mtestfile(math_testcases):
+ func = getattr(math, fn)
+
+ if 'invalid' in flags or 'divide-by-zero' in flags:
+ expected = 'ValueError'
+ elif 'overflow' in flags:
+ expected = 'OverflowError'
+
+ try:
+ got = func(arg)
+ except ValueError:
+ got = 'ValueError'
+ except OverflowError:
+ got = 'OverflowError'
+
+ accuracy_failure = None
+ if isinstance(got, float) and isinstance(expected, float):
+ if math.isnan(expected) and math.isnan(got):
+ continue
+ if not math.isnan(expected) and not math.isnan(got):
+ if fn == 'lgamma':
+ # we use a weaker accuracy test for lgamma;
+ # lgamma only achieves an absolute error of
+ # a few multiples of the machine accuracy, in
+ # general.
+ accuracy_failure = acc_check(expected, got,
+ rel_err = 5e-15,
+ abs_err = 5e-15)
+ elif fn == 'erfc':
+ # erfc has less-than-ideal accuracy for large
+ # arguments (x ~ 25 or so), mainly due to the
+ # error involved in computing exp(-x*x).
+ #
+ # XXX Would be better to weaken this test only
+ # for large x, instead of for all x.
+ accuracy_failure = ulps_check(expected, got, 2000)
+
+ else:
+ accuracy_failure = ulps_check(expected, got, 20)
+ if accuracy_failure is None:
+ continue
+
+ if isinstance(got, str) and isinstance(expected, str):
+ if got == expected:
+ continue
+
+ fail_msg = fail_fmt.format(id, fn, arg, expected, got)
+ if accuracy_failure is not None:
+ fail_msg += ' ({})'.format(accuracy_failure)
+ failures.append(fail_msg)
+
+ if failures:
+ self.fail('Failures in test_mtestfile:\n ' +
+ '\n '.join(failures))
+
+
def test_main():
from doctest import DocFileSuite
suite = unittest.TestSuite()